
Argus Reference Manual
Version 5.1

© 2005 Iceni Technology Ltd

Copyright Notice
©1997-2005 Iceni Technology Ltd. All rights reserved. No part of this documentation may be repro-
duced, copied, transcribed, transmitted, stored in a retrieval system, or translated into any language in
any form by any means without the written permission of Iceni Technology.

Notice Of Change
This document represents the state of version 5.1 of Argus. Iceni Technology reserves the right to
make such changes at any time in the future and will make reasonable efforts to inform interested par-
ties of the nature of the changes.

Contact Details
For the most up to date addresses and telephone numbers, please visit the contacts section of our web
site at www.iceni.com

For specific support questions, use support@iceni.com
Otherwise, please use sales@iceni.com for general enquiries.

We welcome any constructive comments you may have regarding the content, style or layout of this
document. We are also grateful for feedback on and feature requests for our products.

Please use the above contact information to get in touch.

January 20, 2005

technology

Table Of Contents

Introduction .. 15

Using This Manual ...15

What’s New In Version 5.1 .. 16

New for Version 5.0 ...16

Installation .. 18

Installing the Software ..18
Obtaining a License Key ..18
SDK ..18

Compatibility..18

Operation .. 19

Page Geometry Dump.. 21

Pre-Programming Annotations 22

Adding Annotations To Every Page...................................22

Automatically Cropping Pages ...23

Using Text Order Templates ..23

Dealing With Iconic Font Characters....................... 25

Processing Structured Documents 26

Not All Documents Are Structured26
Processing Documents ..26

Extraction Options ... 28

Bookmarks ..28
Bookmark Path ...28
Synth Bookmarks ..28
Built In Fonts Dir ..28
CMap Path ..28
Gridded Text ...29
Hyperlinks ...29
Image Output ..29
Page 3

Table Of Contents

Image Path ..29
Output Threads ...29
Remove Text Items ...30
Rotation ...30
Structured Output ..30
Tabulated Output ..30
Text Output ...30
Text Path ...31
Word List ..31
Word Map Path ...31
Page 4

Table Of Contents

The Configuration File... 33

Supported Escape Sequences ..33

Sections ...34

[SPOOLER] ... 35

Batch Mode ...35
Input Dir ..35
Error Dir ..35
Completed Dir ..35
Filter ..36
Log File ...36
Error Halt ..36
Keep Log ..36
Poll rate ...36
Stable time ..36
Max. Log Size (kB)
Log Trunc. Size (kB) ..37

[Document Features] ... 37

Article Sorting ..37
Auto Crop Render ...37
Captions ..37
ClassMarkup ...37
Collapse Spaces ..38
Combine Slivers ..38
Crop White ..38
De-hyphenation ...38
Full Page Render Zone ...38
Hebrew ..39
Illustrations ...39
Ignore Text ..39
Layout ...39
Line Breaks ...39
Para Gap ..39
Raw Map Words ...40
Span Galleys ...40
Speechmark Recognition ..40
Tab Table ..40
Unicode ...40
XY Sorting
Column Sorting
No Sorting ...41
Page 5

Table Of Contents

[Image Style] .. 41

Alias Limit ..41
Colour Format ...41
Copyright ..41
Comment ...42
File Format ..42
Greek Limit ...42
Image Quality ...42
Scale Mode, XScale, YScale ..42

[ZONE CONTROL] .. 43

Boxes ..44
Vertical Lines, Horizontal Lines44

[FONT MAP] ... 44

Unicode & Double Byte Mapping45
The “Ignore” flag ..45
Font Attributes ..46
Glyph Name Output ..46

[CHAR MAP] .. 47

Dbl Byte Esc Start
Dbl Byte Esc End ..48
Dbl Byte Format ...48
Encoding ...48
Removing Line Breaks ...48

[RESET ON] .. 48

[LIMITS] .. 49

MinFontSize ...49
Table Spacing Factor ..49
FontSizeGapRatio ...50

Interactive Forms ... 51

[WIDGET] ..51
[WIDGET:TEXT] ...52
[WIDGET:BUTTON] ...52
Page 6

Table Of Contents

[WIDGET:CHECKBOX] ...52
[WIDGET:RADIO] ..52
[WIDGET:LIST]
[WIDGET:COMBO] ..53

Character Markup ... 54

Entity Markup.. 55

Document, Page ..55
Story ..55
Headline, Byline, Story Text ..55
Bookmark ...55
Caption ..56
Para ...56
Table, Row, Cell ...56
Pic ...56

[CLASS SPAN] .. 56

[CSS STYLE] ... 57

Path ...58
Format ...58
...ColorDef 58
FontDef ...58
GalleyDef
ParaDef ...59
PicDef ...59
GenSetDef ...60
INFOTABLE ..60

[FONT BANDS] ... 61
Page 7

Table Of Contents
Page 8

Table Of Contents

USING MACROS... 63

Documentation Conventions ..63

Utility Macros...63

CHCASE ...63
COUNTER ...64
FTRUNC ...64
HEAD ...64
INCLUDE ...64
MARKUP ...64
MEDIACHANGE ...65
REPEAT ...65
SECTION ...65
TAIL ...65
TODAY
TOMORROW
YESTERDAY ...65
VALUE ...65

Document Information Macros ..65

AUTHOR
CREATED
MODIFIED ...65
CREATOR
KEYWORDS
PRODUCER
SUBJECT
TITLE ...66
CLEAN_FILENAME ...66
FILENAME ..66
KEY ..66
PAGENUM ...66
PAGELABEL ...66
PAGECOUNT ..66
PATHNAME ..67
THREAD ..67
THREAD_TITLE
THREAD_SUBJECT
THREAD_AUTHOR
THREAD_KEY ..67
THREAD_ID ..67

Font & Character Information Macros.............................67

COLOR ...67
FONTFAMILY
FONTBASEFAMILY ..67
FONTNAME ..68
FONTSIZE ...68

Table Of Contents

FONTBASESIZE ...68
HTMLFONTFAMILY ...69
LEADING ...69
SYLKFORMAT ...69

Geometry Macros ..69

ALIGN ..69
INDENT ...69
INDENTSIZE ...69
MARGINSIZE ..69
WIDTH.. PAGEWIDTH
HEIGHT .. PAGEHEIGHT
POSX .. PAGEPOSX
POSY .. PAGEPOSY
POSYR ...70

Hyperlinks & Bookmarks ...70

BOOKMARK_TITLE ..70
HYPERDEST
IFHYPERDEST ..70
NESTING ...71
PAGEREF ...71
TARGET ...71
URL
RTF_URL ...71
BYLINE ..71

Table Macros..71

CELLWIDTH ...71
COLINDEX ..71
COLRIGHT ..72
COLSPAN ..72
ISEMPTY ...72
ISINTABLE ..72
ISROWSPAN ...72
ISTABBORDER ...72
NUMCOLS..
NUMROWS ...72
ROWINDEX ...72
ROWSPAN ...72
RTFCOLORTABLE ...73
RTFFONTTABLE ..73

Style Sheet Construction & Reference...............................73

COLORINDEX ..73
FONTINDEX
FONTBASEINDEX ...73
GALLEYINDEX ..73

Table Of Contents

GENSETINDEX ...74
IGISITALIC
IGISBOLD
IGISMONOSPC
IGISBASECOL ..74
IINDEX ...74
IMAGEINDEX ...74
INFOTABLE ..74
PARAINDEX ...75

Image Macros...75

BYTES_PER_LINE ...75
CAPTION ...75
NUM_BYTES ..75
OPI ..75
OPINAME ..76
PIC_COUNT ..76
PIC_DEPTH ...76
PIC_EXT ..76
PIC_NUM ...76
PIC_REZ ...77
PIC_SPACE ..77
PIX_WIDTH
PIX_HEIGHT ...77

Interactive Forms Macros...77

WIDGETKEY ..77
WIDGETINDEX ..77
WIDGETOPTION ..77
WIDGETEXPORTVALUE ...78
ISEQUAL ...78

Table Of Contents

Appendix

Formatting Dates.. 75

Font Encodings ... 76

Symbol Font Encoding ..81

Error Return Values... 84

Encoding Names ... 85

.. 86

Notes .. 94
Page 13

Appendix
Page 14

Argus 5.1

Introduction
Argus Server is the most versatile automatic content extraction system available today for
PDF documents. It is built upon Iceni’s Runway content extraction engine and our cross-
platform PDF interpreter.

Argus can extract text, forms data, images, vectors and structural information from PDF
as well as render any part of a page at any resolution. Text can be extracted on a page-by-
page basis or from article threads when present in a document. The output can be placed
in single files or on a file-per-page or file-per-article basis.

Embedded images or rendered areas can be output in EPS, Tiff, JPEG, PNG or BMP for-
mats and scaled arbitrarily. Alternatively entire pages can be rendered to any supported
image format including multi-page Tiff.

The program has a built-in spooler for totally automated operation or can be used as part
of shell script and invoked on a per-document basis.

Argus also comes with an associated software development kit (SDK) enabling its func-
tionality to be embedded in your own C, C++ or Visual Basic programs.

Argus is a highly sophisticated and flexible tool. In fact, the degree of configurability can
be daunting for the new user. Therefore, it is recommended that you familiarise yourself
with the principle aspects of the program before attempting to customise it for your own
requirements.

Using This Manual
This reference manual describes what each configuration option and macro available, but
not necessarily how they may be employed. For a more rounded understanding please
consult the configuration files included with the Argus distribution in conjunction with
this manual.
Page 15

Argus 5.1

What’s New In Version 5.1
• New macro for logical page numbers
The PAGELABEL macro can be used to retrieve page labels from those PDFs that use
them. See “PAGELABEL” on page 66.

• New object geometry macro
The POSYR macro gives the y position of the current object relative to the bottom of the
page. See page 70.

• New image macro for determining the resolution of embedded images
See “PIC_REZ” on page 77.

• Text geometry-dump command-line flag
See “Page Geometry Dump” on page 21.

• Improved text rendering

• New compiler environments used for Argus on Solaris and Linux
Both platforms use gcc 3.x and are now linked statically (no additional dynamic libraries
are required at runtime).

• Build date reporting
Running argus -v now displays the build-date of the software as well as version number.

• cmaps included with all builds
The cmaps folder includes Adobe translation tables for many Chinese, Japanese, Korean
& Vietnamese font encodings. These files were missing from the standard distribution for
5.0

• Expanded unifont file
Argus includes a wider though not exhaustive selection of substitute Asian characters.
These characters are crude in design but are sufficient for reading when no embedded font
is included in an Asian PDF.

This file is only required if rendering PDF and is not used for extraction of content.

New for Version 5.0
• Interrogation of OPI dictionaries where available
For documents containing embedded OPI information, Argus provides a selection of mac-
ros to extract various meta data from the OPI dictionaries. See “OPI” on page 75.

• Extraction of named OPI images
Argus can be used as an image server extracting specific named images from OPI enabled
PDF documents. See “Extraction Options” on page 28.

• Encapsulated PostScript image output
Argus can output embedded images as Photoshop compatible EPS retaining clip paths
and original colour space. It can also convert entire pages into EPS. See “File Format” on
page 42.

• Handling of image “mosaics”
Argus will optionally merge thousands of tiny image slivers to form complete images.
This is useful when dealing with PDF produced by certain applications which shred im-
ages into thousands of single-line slivers to reduce file size. See “Combine Slivers” on
page 38.

• Output ordering templates for text
A new kind of annotations - “Iceni Order Box” gives template-based control over text out-
put order. A little like applying automatic article threads across a range of pages, this fea-
ture can solve problems with multi-column documents that may not otherwise output
Page 16

Argus 5.1

correctly. See “Using Text Order Templates” on page 23.

• Finer control over zoning
The ability of Argus to maintain discrete area across which text cannot flow has been ex-
tended to include areas defined by vertical and horizontal lines as well as boxed areas.
This is helpful when exporting newspaper and magazine layouts. See “[ZONE CON-
TROL]” on page 43.

• Access to internal limits
Some of the obscure internal limits have been exposed to allow fine adjustment of aspects
of Argus such as minimum font size (below which text is discarded). See “[LIMITS]” on
page 49.

• Output of PDF Forms (Interactive Forms)
The text within form fields in forms-based PDFs can now be exported. See “Interactive
Forms” on page 51.

• Initial support for right-to-left reading languages
Documents written in Hebrew can now be output in logical and visual formats. See
“When EPS is selected as the image output format, Argus performs a true EPS conversion
rather than a render.” on page 38.

• Support for forced page rotation
Pages can now be rotated prior to analysis - useful for pages that print with a non-upright
rotation. See “Rotation” on page 30.

• Support for password encrypted documents
A password may now be supplied on the command line to cope with documents locked
with standard encryption. See “Operation” on page 19.

• Improved rendering speed
Page 17

Argus 5.1

Installation
Included on the CDRom which comes with this package are all current versions of Argus:
Linux (Intel), Solaris (Sparc), MacOSX and Windows, plus the SDK and associated re-
sources for each platform.

Installing the Software
Copy the relevant Argus distribution folder (Linux, Windows, MacOSX, or Solaris) to the
host computer.

The program will run in demonstration mode only until a valid license key is provided. In
demonstration mode, all images and random words are corrupted to render them unusable
for all but testing purposes.

Obtaining a License Key
All versions of Argus use a software key license based upon the identity of the host com-
puter. A code unique to the host machine is required to generate a license key file which
will be sent to you by Iceni.

To create the unique host-id for the machine running Argus execute the command “argus
-v”. As well as printing some version information this will create a file called “hostid.txt”.
E-mail this file to sales@iceni.com and we will create a new license key based upon it.

When Argus runs it searches for a file called “argus.key” which should contain nothing
but the special key supplied by Iceni. If it does not find the key file or the key does not
match the host machine, Argus will operate in demo mode.

An alternative location for the key can be specified with the “-h” flag on the command
line.

SDK
The “C” and Visual Basic SDK is contained in a separate folder with a sub-folder for each
platform plus a “common items” folder containing some of the third party libraries re-
quired.

Complete documentation for the SDK is contained in the “SDK Reference.pdf”.

Compatibility
Argus is compatible with all versions of from up to PDF 1.4 (Acrobat 5). Beyond this
there are some features not yet implement:

• Transparency - Argus cannot render transparency
• Object streams (highly compressed PDF, Acrobat 6 onwards)
• JBIG compression for b/w images (Acrobat 6)
• JPEG2000 image compression (Acrobat 6)

It is anticipated that some if not all of these features will appear in later releases of the
product.
Page 18

Argus 5.1

Operation
argus -[aefhmpsuv] [-pw <password>] [-c <config file>] <pdf files...>

-a Causes Argus to scan the first input PDF and output a summary of all Iceni annotations
found within it. An Iceni annotation is (at the time of writing) an “Iceni Table Box”
and “Iceni Image Box”. Both of these annotation types may be added to a document
using a demo version of the Gemini plug-in for Acrobat.

The annotation summary (the Annotation Plan) is written out to the Console along
with the contents of the current configuration file.

See “Pre-Programming Annotations” for more information on using this feature.

-c Specifies the name of a configuration file to use. If omitted, the program will generate
a default configuration file called “argus.cfg”. This is often a good place to start when
preparing a new configuration.

-e Argus will scan the first given document and take note of any logical structure tags
found in it. These tags are then used to create a set of entity definitions which are writ-
ten to a file called “entity.cfg”.

When dealing with a Structure/Tagged PDF these entity definitions can be used to
map entity names in the original document to those desired on output.

See “Processing Structured Documents” on page 26 for a step-by-step guide to using
this feature.

-f Causes Argus to output a list of fonts used in the document. The list covers only those
pages processed. This facility is useful when creating FONT MAP sections in a con-
figuration file which relate to a specific font. See “[FONT MAP]” on page 44 for fur-
ther information.

-g Output geometry of all text on all pages in the range. Also output width & height of
each page. See “Page Geometry Dump” on page 21.

-h Specifies an alternate file name for the host id key file. The default is “argus.key”.

-m No messages. By default Argus will output various status messages during document
processing. When this option is used progress output is disabled except in the case of
an error (or when using -a).

-p Specifies a page range for processing. Applies only when page-based output mode is
selected (See “Argus Controls”)

Some example page ranges are given below:

1Process only the first page
1-#Process all pages
15-23Process page 15 to 23
#Process only the last page
1,#Process the first page and the last page
1-3,#Process the first 3 pages and the last page

Do not include spaces in a page range. Argus will assume anything after the space is
the start of another argument or file name.

-pw Password. Enables Argus to open (decrypt) documents that have been encrypted with
a password. The given password will be used for all documents given on the command
line. Do not supply a password for unencrypted documents or those that have no user
password.
Argus can cope with both 40 and 128-bit standard encryption.

-s Spooler operation. When spooling, Argus polls a specified input directory for files to
Page 19

Argus 5.1

process. These are processed and placed into an output directory. The parameters con-
trolling spooler operation are held in the “Spooler” section of a configuration file. See
“[SPOOLER]” on page 35

-u When this flag is given during normal operation, Argus will update the supplied con-
figuration file if its version number is less than the current version of the program.

This used to happen automatically whenever an old configuration file was loaded prior
to Argus version 4.

-v Causes the program to output a simple version message. Any additional parameters
will be ignored and no PDF processing will occur. A default configuration file will be
generation called “argus.cfg” if no ‘-c’ has yet been encountered.
This option will also verify that a valid dongle is connected to the host machine and
audits the number of “clicks” remaining on the dongle.

-xopi <opi image name>[,<opi image name>]*
Using this option causes Argus to export only images whose OPI name matches one
of the names given.The list should not contain spaces - if it must, enclose the entire
list in quote marks.

If for example a document contained a image whose OPI dictionary state that its original
filename was “MBUK161.group.pic20” then a command such as:

argus -c imageConfigs/tiff.cfg -xopi MBUK161.group.pic20 myDoc.pdf

would export only the named image.
Name matching ignores case and will match any part of a name. So the following names
would also match:

mbuk161.group.pic20
mbuk161
pic20
Page 20

Argus 5.1

Page Geometry Dump
If the -g command line flag is provided, Argus will output a summary of all text on a page
with coordinates. A typical dump is illustrated below:

> argus -g -p 25 referenceManual.pdf

Page 25 595x842

275 87 23 10 Page
298 87 9 10 24
274 797 24 10 Argus
298 797 11 10 5.0
96 765 109 27 Processing
204 765 103 27 Structured
306 765 112 27 Documents
125 747 24 11 From
148 747 21 11 PDF
169 747 15 11 1.3
183 747 39 11 onwards,
222 747 46 11 documents
267 747 16 11 can
283 747 32 11 contain
315 747 43 11 additional
357 747 42 11 meta-data
399 747 26 11 called
425 747 37 11 structure
462 747 16 11 tags
125 735 18 11 that
142 735 40 11 describes
181 735 20 11 both
202 735 15 11 the
216 735 6 11 <fb02>
222 735 12 11 ow
.....

The first line of the dump contains the page number and dimensions (relative to any page
crop) of the page in PostScript points. If there is no page crop in use, these dimensions
will match those of the page’s media box.

The rest of the dump is split into 5 columns:

[x co-ord] [y co-ord] [width] [height] [text]

The x,y coordinates are relative to the bottom left of the crop box1 (or page media box is
there is no crop box).

Where text includes double-byte (wide) characters they are represented as hexadecimal
and placed inside angle brackets. For example:

216 735 6 11 <fb02>

1. In the “Amazon” build of Argus the x,y coordinates are relative to the top, left of the crop box (or
page media box is there is no crop).
Page 21

Argus 5.1
Pre-Programming Annotations
By adding special PDF annotations to documents, Argus can be given “hints” on how a
document should be extracted. These hints can include the locations of tables, images and
regions to be ignored within documents.

At the current time, Argus supports four annotation types-

Iceni Image Box
Iceni Crop Box
Iceni Table Box
Iceni Order Box

These can be added to PDF’s manually using the
demo version of Gemini for Macintosh or Windows
(available from our web site).

In order to pre-program annotations into Argus, an an-
notated PDF file is required for input. The annotations
are harvested from the PDF and written into an argus
configuration file. The format of an annotation in the
configuration file is:

<number>.<type>=<page range> [<top> <left>
<bottom> <right>] <flags>;

For example, if Argus is required to process 10,000
documents each with a table in the centre of every
page the following procedure should be followed:

• Open an example of the documents in Solo. Using the
table box tool, add boxes where you require them, setting the page range of each accord-
ingly.

• Save this document.

• Using Argus, issue the following command to process the document just saved:

argus -a savedExample.pdf > newConfig.cfg

This will cause Argus to read the PDF and output a new configuration file called “new-
Config.cfg” containing an annotation plan detailing all of the annotations to be added
when processing future documents.

• Incorporate the [ANNOT PLAN] section from this config in your own config files (or use
the #include mechanism).

To now extract all tabular information from similar documents, use this new configuration
file.

Note that documents processed in this way are not modified in any way.

Do not process the document used to create the new configuration file. Since that
document already contains annotations, Argus will add them plus those listed in
the annotation plan. This will cause incorrect output where two annotations clash.
Instead ensure that all Iceni annotations are removed from the document before
it is processed or process it using a config file with no annotation plan.

Adding Annotations To Every Page
It is possible to edit the annotation plan to ensure that an annotation is mapped to every
Page 22

Argus 5.1
page of the document even if the example document from which the plan was created only
contained the annotation on a single page.

This avoids the need to manually annotate an entire document before creating the annot
plan.

The following is a simple ANNOT PLAN section taken from an Argus configuration file:

[ANNOT PLAN]
0.Iceni Table Box =1, [732.25, 30.82, 224.70, 593.09];
[-- END --]

This plan instructs Argus to add an “Iceni Table Box” annotation on the first page of every
document with the coordinates (732.25,30.82) (224.7, 593.09).

The page number (1 in the example above) may be a fully specified page-range as used in
the “-p” command-line flag for Argus. See “Installation” on page 18 for information about
the format of a page range.

For example, to process a hypothetical set of documents with tables on pages 5-10 and 12
as well as ignoring headers from page 2 onwards, the following annotation plan might be
used:

[ANNOT PLAN]
0.Iceni Table Box =5-10,12 [732.25, 30.82, 224.70, 593.09];
1.Iceni Image Box =2-# [0.00,600.00, 400.00,740.00];
[-- END --]

If you require assistance setting up an annotation plan, please email support@iceni.com.
Demo versions of Iceni’s “Gemini” plug-in and “Gemini Solo” application are available
from our web site - www.iceni.com.

Automatically Cropping Pages
By creating an “Iceni Crop Box” annotation, Argus can be instructed to apply a temporary
crop box to a range of pages. This may be useful for removing repeated headers and foot-
ers (such as page numbers) from the output.

Adding a crop box to the annotation plan is done in the same way as both table and image
boxes. However, the Gemini plug-in which can be used for this purpose doesn’t list “Iceni
Crop Box” as one of its link types. Instead use either the table or image box to define the
cropping rectangle. Once a new configuration file has been created with a new annotation
plan, edit the annotation name to be “Iceni Crop Box”.

Any text outside of the crop box will not be output. You can only have one crop box per
page. If you specify two for the same page, only the first listed will be used.

Example:

[ANNOT PLAN]
0.Iceni Crop Box =1-# [341.15, 91.78, 259.87, 364.84];
[-- END --]

Using Text Order Templates
Sometimes Argus does not output text in the correct order. This can occur with multi-col-
umn documents for example. You can use Article Threads to remedy these problems but
these have to be added manually to each document before processing. A more automated,
though less sophisticated approach is to use “Iceni Order Box” annotations.

These are similar to crop, table and image annotations and are stored in the [ANNOT
Page 23

Argus 5.1
PLAN] section of a config file. Typically a number of order boxes will be placed on a page
and made to span for a number of pages. Each order box is numbered and behaves in a
manner similar to an article thread. Text falling into order box 0 for example, is output
before text within order box 1 and so on. There is no limit to the number of order boxes
that may be added to a page.,

For a two column document only two boxes need to be added. These should each be made
to enclose one column of text. Any text not enclosed such as headers and footers will be
treated as normal. If your document layout changes on later pages, add further order boxes
and adjust the page-range of all boxes so the entire document is covered.

There is no tool specifically for creating order boxes in versions of Gemini Solo prior to
2.0. An example of using a pre-2.0 version of Solo to create an order plan is show below.

Step 1: Open your document in Solo and add image box annotations around columns or
blocks of text you want to control. A example screen shot is shown below of the Macin-
tosh version of Solo.

This screenshot shows two table boxes (shown in blue) placed around two columns of
text. If this document has following pages in a similar layout, the page range should be
set appropriately for each box so that is covers these pages.

If the layout changes, add new annotations to reflect this adjusting the page-range of all
annotations so that they do not overlap.

Step 2: Save the document.

Step 3: Run the command:

argus -a doc.pdf > annot.cfg

where ‘doc.pdf’ is the document just marked up. This will generate a new config file
called ‘annot.cfg’ with an [ANNOT PLAN] section something like the following:

[ANNOT PLAN]
0.Iceni Table Box =1-10 [666.21, 400.88, 30.43, 580.21] 0;
1.Iceni Table Box =1-10 [665.13, 212.87, 30.43, 392.19] 0;
[-- END --]

Step 4: Change ‘Iceni Table Box’ to ‘Iceni Order Box’.

Step 5: Specify the order of the two boxes. Do this by looking at the coordinates of the
boxes and deciding which should be output first. The format of the coordinates shown is:

[top left bottom right].

Remember that the origin in PDF documents is the bottom left of the page. So after re-
numbering, the example above would be:

[ANNOT PLAN]
0.Iceni Order Box =1-10 [666.21, 400.88, 30.43, 580.21] 2;
1.Iceni Order Box =1-10 [665.13, 212.87, 30.43, 392.19] 1;
[-- END --]

The numbers you use are not important as long as the are in order (you could have num-
bered then 0 and 1 for example).

Step 6: Manually add the annot plan to your own config file or use the #include facility
to import it.

Step 7: Remember to remove the table boxes from your original document since they
would cause problems with the text output if you processed the document with your new-
ly modified config.
Page 24

Argus 5.1
Dealing With Iconic Font Characters
Symbol fonts such as Monotype-Sorts, MathPi, ZapfDingbats etc. are difficult to convert
in a way that is suitable for a wide range of output formats. Due to the irregular nature of
the characters in such fonts, a general translation from PDF into HTML or RTF may not
always be possible.

One approach to help in solving this problem is to combine the word mapping facility (see
“Word Map Path” on page 31) with the glyph name output feature of the FONT MAP sec-
tion (See “[FONT MAP]” on page 44).

For example, given a document with an iconic style font called “WoodOrnamets” contain-
ing:

Text with a � symbol and a � icon

the following FONT MAP will cause the glyph names of characters to be output rather
than the actual character codes:

[FONT MAP:WoodOrnaments]
Glyph Names =true;
Glyph Start =[.;
Glyph End =];
[-- END --]

When output, a document may yield:

Text with a [.scissors] symbol and a [.heart] icon

To then convert these glyph sequences into something more useful in HTML for example,
a word map file called “substitutes.txt” is created with the following entries:

[.scissors]:
[.heart]:

Argus needs to be instructed to make use of this word map file. In the ARGUS CON-
TROLS sections the following line is added:

Word Map Path=substitutes.txt;

When processing the same document, the output will now be:

Text with a symbol and a icon

This is how the text would appear in an HTML browser. Argus will have mapped the
HTML special characters < and > to ensure that they do not inadvertently effect the
HTML formatting. However, in this case, this mapping is undesired. Instead Argus must
be told to bypass the CHAR MAP for substituted words. This can be done in the DOCU-
MENT FEATURES section with the following:

Raw Map Words = true;

Note that this kind of use of the word-map feature is only intended for documents
containing a few special characters. For documents consisting mainly of glyph
fonts, it is better to use a post process search-and-replace procedure after Argus
has finished.
Page 25

Argus 5.1
Processing Structured Documents
From PDF 1.3 onwards, documents can contain additional meta-data called structure tags
that describes both the flow of a document and arbitrary attributes for each component of
it.

For PDF 1.4, a properly tagged document must have a tree-structure with the document
itself at the root of the tree. Branches and nodes of the tree are represented as chapters,
sections and paragraphs or any other hierarchic arrangement you care to use.

The tagging mechanism is so flexible that any tag can be used for any part of a document,
there being no need to stick to rigid monickers such as “paragraph” or “chapter”. A Doc-
ument could just as easily be a collection of “flibberts”, grouped by “mickels” and “tran-
dons” for example.

Argus version 4 is able to interpret the tree structure of a tagged document. How-
ever, it does not offer access to all of the attributes assigned to each particular
component. This facility will be included in later versions.

The program can output the text of a document by performing an in-order traversal of the
structure tree. This means that in theory, the output order of text may no longer bare any
relationship to the order of pages in the document but will instead follow that of the struc-
ture tree.

Not All Documents Are Structured
Even though PDF may contain any kind of structure information required, it is the respon-
sibility of the generating application to include this information. As at the time of writing,
few applications support full structure tagging. Microsoft Word and Adobe’s InDesign
support it to an extent and others will no-doubt follow suit in the future.

Processing Documents
Using Argus to output a document via a structure tree traversal is typically a three stage
process.

Stage 1

The first stage is to catalogue the structure tags used in the document. Since these can be
arbitrary names, the use of a particular name such a “paragraph” cannot be taken for
granted.

Using the -e flag to Argus will cause it to dump a new configuration file containing for-
matting entries for every structure tag found in the document.

By default the configuration file is created in such as way as to output the tag start and end
in an XML fashion such as <section>, </section> with the textual content in-between.
However, you will probably want to tailor this to your particular requirements as follows.

Stage 2

Edit the configuration file produced. Alter the Start and End formatting for each tag listed
to generate the final output format you require. For HTML output for example, you may
wish to format the “paragraph” (or equivalent) tag to be “<P>” and “</P>”.

You must also enable structured output in the “DOCUMENT FEATURES” section of the
new configuration file by setting the “Use Structure” flag to true.

Stage 3

Now your original document and any others like it can be processed using the new con-
Page 26

Argus 5.1
figuration file created. Since the “Use Structure” option has been enabled, Argus will out-
put the text of the document by traversing the structure tree (there is no need for the -e flag
now).

The program will output the text content of each structural element encountered, bounded
by the Start and End formatting you prescribed for the element.

You may use this same configuration file for all documents produced by the same program
with the same tags. Different PDF producers will probably need different configuration
files tailored to their own tag names.
Page 27

Argus 5.1
Extraction Options
The way in which Argus analyses and processes documents can be controlled to a degree
via a series of behaviour flags and path settings. These settings are all listed in a section
entitled [ARGUS CONTROLS] in the configuration file. See “The Configuration File” on
page 33 for a description of the overall layout of a standard configuration file.

The flags in the [ARGUS CONTROLS] section can be enabled by either of “true” or “1”.
Similarly they can be disabled using “false” or “0”.

When specifying a pathname that includes slashes, Argus makes no distinction be-
tween forward (Unix) and backward (Windows) slashes. In fact, since a backslash
must be escaped as ‘\\’ it is more convenient to use forward slashes (Unix style).

There now follows a description of each setting available.

Bookmarks
true | false

Bookmark Path
pathname

Synth Bookmarks
true | false

Controls the output of bookmarks. These are sometimes present in PDF documents and
consist of a hierarchic list of destinations within the document body.

When enabled, the output is sent to the destination described in “Bookmark Path”. It also
causes the definition of hypertext anchors within the document body to act as destination
for the bookmarks.

If a document contains no bookmarks of its own Argus (from 3.1 onwards) will synthesise
bookmarks based upon the content of the document. It does this by looking at the head-
ings in a document and sorting them into a hierarchy based upon the font size of the head-
ing.

This feature can be disabled via the “Synth Bookmarks” flag.

See “HYPERLINKS” and “BOOKMARKS”

Built In Fonts Dir
pathname

Specifies the folder containing the standard Type1 fonts used by the renderer during font
substitution. If not set, Argus will not be able to render text when the document does not
include the font for the text.

CMap Path
pathname

Specifies the location (directory) of the standard Adobe CMAP translation files. These
files enable Argus to translate fonts encoded in locale specific schemes such as Big-5 into
Unicode. Once in unicode format, the program can then convert then into any of the sup-
ported output encodings - see “[CHAR MAP]” on page 47 for details of output encoding.
Page 28

Argus 5.1
Gridded Text
true | false

Outputs text using a grid system which attempts to retain the layout of the original page.
Words are positioned on the page using spaces.

Useful for both plain text output and HTML if the <pre> tag is used.

This mode may be useful for exporting invoices or other simply constructed PDF pages
into a plain text format while preserving the layout. Depending upon the complexity of
the input PDF, it is not always possible to replicate the layout exactly.

When viewing output generated in this way it is important that a mono-space font
is used such as Courier since the layout effect relies on the fact that each charac-
ter has the same width.

Hyperlinks
true | false

Controls the output of hypertext links within a document. When enabled hypertext links
in the original PDF are re-created in the output within the limits of the chosen output for-
mat.

HTML output is quite suitable for recreating most link types although Argus does not cre-
ate image map links.

See the HYPERLINKS sections for more information.

Image Output
true | false

When enabled, images are output when encountered in the original PDF document. The
exact format of the images output is controlled by the “IMAGE STYLE” section. The lo-
cation of the output images is controlled by the “Image Path” pathname (see below).

Argus version 3 now outputs all images. Previous versions did not output very small im-
ages (less than 4k bytes in size) or images held in Forms.

Image Path
pathname

Sets the destination for image output. The definition may include macros (& in fact makes
little sense if it does not).

For example:

Image Path =/users/home/images/[IMAGECOUNT].jpg;

This causes each image to output to a file named by the image count of the image. i.e.
0.jpg, 1.jpg, 2.jpg etc.

Any subdirectories mentioned in the pathname will be automatically created by Argus as
necessary.

Output Threads
true | false

When true the documents are no longer output on a page-by-page basis but on a thread-
by-thread basis. “Thread” is another name for “Article” as used within the Acrobat appli-
cation.
Page 29

Argus 5.1
An article thread can be defined by the user within Acrobat or by the program producing
the PDF document (as is the case with FrameMaker). Each thread can span many pages
and serves to guide the reader through one complete article within the document.

Hence extracting by thread ensures that articles are exported complete with all their par-
agraphs. Even when an article spans multiple columns and pages, Argus will reflow the
article to produce one complete text block.

The destination for output of each thread is controlled by the “Text Path” pathname.

Remove Text Items
true | false

When true, no text items from the original page will be output. This is not the same as
disabling text output. A typical use of this is to create a config file which produces a sum-
mary or catalogue of images in document. Argus will find only images and illustrations
in its display list after removing text items but will still produce the output specified in the
[PIC] section and send it to whatever file is specified for text output.

To see this in use please refer to imageConfigs/opihtml.cfg which output no text items
from PDF but just an inventory of images, formatted as HTML.

Rotation
0 | 90 | 180 | 270

Forces Argus to treat documents as if they were rotated by the given number of degrees.
This is most useful for processing documents that are rotated but that do not indicate the
fact in their page dictionaries.

The default position is to specify no angle.

Structured Output
true | false

When enabled Argus will ignore the physical order of text and pages in a document and
will instead output text in the order dictated by a document’s structure tree. This setting
should only be used for documents known to have valid and useful structure trees i.e.
tagged PDF only.

See “Processing Structured Documents” on page 26 for more information.

Tabulated Output
true | false

When true causes each page to be treated as if it were laid out using a complex table struc-
ture. This table is then translated into the output format using the definitions of TABLE,
ROW and CELL in order to better preserve page layout.

Note that this option does not normally retain the layout of tables within the original PDF.

Due to the possible complexity of PDF pages, this feature rarely results in an accurate
preservation of layout but may provide an improvement over non-tabulated output.

Text Output
true | false

When false no text is output from Argus. Set to false when only image output is required
(as is the case in the tiff.cfg example configuration file included with the distribution).
Page 30

Argus 5.1
Text Path
pathname

Controls the output destination for text. Both page text and thread text make use of this
value. The pathname itself may be made up of several macros in order that it reflects the
documents or pages etc. from which it came.

Examples of path names are:

a) Text Path = docs/[FILENAME]/page[PAGENUM].html
b) Text Path = docs/[FILENAME].html
c) Text Path = docs/[FILENAME]/thread-[THREAD_ID].html

a) Outputs each page of a document in a separate file, all contained within a directory with
the same filename as the original document.

b) Outputs entire text of document in one file with the same filename as the document.

c) Outputs each thread of the document in a separate file, all within a directory with the
same filename as the document. (Only works when “Output Threads” is enabled.)

Although many macros may be used within the pathname, not all are appropriate when
taken out of context and in fact may cause an error. For example “FONTSIZE” cannot be
used in this way since it is only in context during output of text from the document.

Any subdirectories contained within the pathname will be created by Argus if they do not
exist.

In order to force text to be sent to the console rather than to a file, set the pathname to
nothing. That is:

Text Path =;

Word List
pathname

Points to a file containing a list of words. These words are use by Argus when deciding if
a hyphenated word found at the end of a line should be de-hyphenated. If the de-hyphen-
ated form of the word exists in the dictionary, Argus will de-hyphenate it. If one of the
words each side of the hyphen is found in the list, Argus will not de-hyphenate.

The list, which exists as a single line of space delimited, lower case words, may be mod-
ified manually. However it must always remain in sorted alphabetic order otherwise word
look up will fail.

Words entered into the list do not need plural equivalents - Argus automatically deals with
plurals. It should be noted that the default English language list supplied with Argus does
contain some plurals and that these are redundant.

Word Map Path
pathname

Points to a file containing word mappings. The mappings are from one word to another
word or sequence of words. This facility is mainly used for mapping glyph names into
more useful text sequences.

The format of a word map list is:

<target word>:<replacement text>

For example, the following is a valid word map list:

[H9254]:<SYMBOL>delta</SYMBOL>
[H9278]:<SYMBOL>phi</SYMBOL>

When Argus decides to output the glyphname of a character because it is a non-standard
name, the software will consult the word map to see if the name can be mapped to any-
Page 31

Argus 5.1
thing more meaningful. This is of most use for fonts containing non-standard glyph
names.

By default all replacement text is itself subject to character mapping via the CHAR MAP.
This second mapping can be avoided using the “Raw Map Words” feature flag. See “Raw
Map Words” on page 40.
Page 32

The Configuration File
The Configuration File
The configuration file is the main way in which Argus is controlled whether it is the com-
mand line or SDK version being used. The file is an ASCII file similar in form to the com-
mon Microsoft Windows preferences file format.

At the start of each main configuration file there are some version and owner data which
is essential for Argus. For Argus 4, this header looks as follows:

ICENI PREFS
OWNER:Argus
VERSION:500

At any point throughout the file, additional sub-files can be included. This is useful for
including such things as standard character maps shared amongst a number of different
output formats.

To include a sub-file, use the following:

#include filename

This directive must be the only thing on the line and cannot span multiple lines. Every-
thing after the “include” is taken to be the file or path name.

Included sub-files can themselves include further sub-files. Subfiles do not require the
three line version header as described above.

For example, the html css1 configuration supplied with the distribution includes the fol-
lowing:

#include charMaps/htmlSimple.cmap

This causes a commonly used character map to be included. Changes to this character
map will be reflected in every configuration file which references it.

Supported Escape Sequences
The following escape sequences are supported by Argus when reading a value from a con-
figuration file:

\NNN 3-digit octal character
\xNNNN 4-digit hexadecimal character
\\ Backslash character
\n Carriage return
\r Line feed
\t Tab

For example:

[FONT MAP: StrangeFont]
d55 =\157; Octal character 157 (111 decimal);
d56 =\x2001; Hex character 2001 (8193 decimal);

The hexadecimal escape mechanism is currently the only way to represent double-byte
characters in Argus.

When specifying a pathname that includes slashes, Argus makes no distinction be-
tween forward (Unix) and backward (Windows) slashes. In fact, since a backslash
Page 33

The Configuration File
must be escaped as ‘\\’ it is more convenient to use forward slashes (Unix style).

Sections
The configuration file is divided into discrete sections using the format:

[section name]
[-- END --]

Each section contains simple key - value pairs of the form:

key = value;

The <value> may span more than one line but must always be terminated with a final
semi-colon “;”. Any newline characters included, will be taken literally and included in
the definition of the value. This may be useful for producing ‘neat’ output such as HTML
with line-breaks.

The terminating semi-colon ‘;’ is vital. Without it, the configuration file may still load
without error but Argus may associate the wrong values with the wrong keys.

To include a newline character in the file but not in the definition (that is a line break in
the configuration file to render it more readable) then place a backslash before the
newline.

For example:

myKey =this is a value\
which will not eventually contain a new line\
even though the config file appears to contain two;

To include a semi-colon within the value itself, escape it using “\”. Similarly to include
the back-slash character it needs to be escaped as in ‘\\’.

Everything after the semi-colon is ignored up until the next line starts. Also anything out-
side of a section is ignored. Either of these places can be used for comments.

The sections of a config file can be grouped by function:

Though there may be other sections available in the file, these are not used by this version
of Argus.

The rest of this document consists of a reference to the format of each of these sections.
For examples of using particular features of Argus, please also see the configuration files

CONTROL & BEHAVIOUR CHARACTER MARKUP ENTITY MARKUP

CHAR MAP
DOCUMENT FEATURES
FONT MAP
IMAGE STYLE
PROFORMA
RESET ON
SPOOLER
ZONE CONTROL
LIMITS

BOLD MARKUP
COLOUR
FONT BANDS
ITALIC MARKUP
MONO SPACED MARKUP
SANS SERIF MARKUP
SERIF MARKUP
SUB SCRIPT MARKUP
SUPER SCRIPT MARKUP

BOOKMARKS
CAPTION
CLASS SPAN
CSS STYLE
DOCUMENT, PAGE
GALLEY
HEADLINE
HYPERLINKS
PARA
PIC
STORY, STORYTEXT
TABLE, ROW, CELL
WIDGET
Page 34

The Configuration File
included with the distribution.

Each entry in a configuration section is immediately followed by its associated arguments
in italic.

[SPOOLER]
The spooler built into Argus has two modes of operation - batch and queue.

In batch mode a list of all files to be processed is gathered then Argus works its way
through the list processing each file in turn. Once the list is empty it attempts to compile
another list.

When in queue mode, the spooler operates a strict first-in, first-out queue where it contin-
uously polls the input folder for new files. The oldest file found is processed first.

The advantage of queue mode is that files added to the input folder are detected by Argus
almost immediately. This means that files can be deliberately aged using a date stamp to
ensure they go to the head of the processing queue.

The disadvantage comes when the input folder contains many matching files. The over-
head of scanning and sorting all available files between each job can be considerable.

In batch mode, there is only one initial scan for files. From then on, files are processed
one after the other in arbitrary order until none is left at which point another scan is done
to see if there are any new files. Due to the infrequency of scans, it is not possible to add
files to the input directory and have them noticed rapidly by Argus. However, this method
involves very little overhead between jobs.

In either mode, as each job is processed an entry is written to a text based log file together
with a time-stamp.

Batch Mode
true | false

When true, Argus will operate in batch mode.

In Batch Mode, Argus scans the input folder once then processes each file found. Once
all files have been processed it will re-scan the input folder for new files.

This mode of operating is faster than queue-based spooling and is suitable for those oc-
casions when a large number of files have been accumulated ready for processing.

Input Dir
pathname

The folder to be polled for suitable input documents. All sub-folders of this folder will
also be polled.

Error Dir
pathname

If an error is encountered during processing, a PDF job will be moved to this folder.

When in batch mode, if the value of Error Dir is the same as that of Input Dir, files are
not moved but remain in the input directory.

Completed Dir
pathname
Page 35

The Configuration File
The folder in which to move PDF jobs that have been processed successfully. If this entry
is omitted or it blank, then completed jobs are deleted on success.

When in batch mode, if the value of Completed Dir is the same as that of Input Dir then
files are left in place. Once a batch is completed, processing stops and Argus exits.

Filter
file pattern

The pattern describing which files should be processed in the input folder. The pattern can
include ‘*’ which matched anything and ‘?’ which matched single characters only.

For example:

Filter=*.pdf;
Filter=”Legal? Text.pdf”;

Only one filter may be supplied in a configuration file.

Pattern matching is case independent so for example, “*.pdf:” would match files ending
in “.PDF” and “.pdf”,

Log File
pathname

The location of the log file. All activity of the spooler is written to the log file together
with a time stamp showing when the activity occurred.

In order to stop the log file from growing unchecked, Argus will truncate it periodically
to any length required. See Max. Log Size below.

Error Halt
true | false

Informs Argus whether it should halt all processing when a PDF causes an error. If true,
the spooler stops and Argus quits. Otherwise, the job is moved to the error directory and
spooling continues.

Keep Log
true | false

When true, Argus maintains a log file of activity. Otherwise it does not.

Poll rate
rate in seconds

The delay between successive polls of the input directory. Setting it to a higher number
causes a longer delay and less load on the host machine during idle periods.

The effect of this setting is most noticeable when in queue mode.

Stable time
time in seconds

Before Argus processes a matching input file, it will wait for a specified period of time to
see if the file size if still changing. This may happen if for example, the file is being writ-
ten across a busy network.

Waiting in this manner helps to ensure that only files which have been completely written
are processed.
Page 36

The Configuration File
Max. Log Size (kB)
Log Trunc. Size (kB)
size in kilobytes

These two setting control how the log file is truncated. The Max size setting is the maxi-
mum size that Argus will allow the log file to grow. Beyond this, the size is truncated by
removing a chunk from the start equal to Log Trunc Size.

[DOCUMENT FEATURES]
Most entries in this section control features of the underlying Runway extraction engine
employed by Argus. Each is a simple on/off switch. Use ‘1’ for on and ‘0’ for off (or
“true” and “false”).

Article Sorting
Related paragraphs and headings are grouped into a “Story” object. This may alter the
reading order of the page.

Useful for article-based documents such as newspapers and magazines. This feature
should be disabled for documents known not to follow this pattern, such as books and
memos since a different sorting method is employed in these cases.

Do not confuse “Article Sorting” with threads and threaded documents. The latter
is a more effective method of ordering or grouping text. See “Output Threads” on
page 29 for more information.

Auto Crop Render
When true, Argus will apply a crop to each rendered page cutting out unoccupied space.
The crop is formed by merging the bounding boxes of every item rendered on the page.

See “Full Page Render Zone” on page 38 for details of page rendering.

Captions
Associates text with images. On occasion body text may be mis-classified as an image
caption.

Disable this feature for documents that contain little or no true picture captions.

ClassMarkup
This flag changes the way Argus outputs markup characters. When off, Argus will output
the text defined for Bold, Italic, font size etc. whenever one of these attributes changes.

When enabled, Argus outputs a tag which represents the combination of attributes for the
current text. It does this by first cataloguing all combinations of character style used in a
document. A reference to this catalogue is then all that is output when a style change is
required.

This behaviour means Argus can output correct Cascading Style Sheets tags when re-
quired. See “[CSS STYLE]” on page 57 and “[CLASS SPAN]” on page 56 for more in-
formation.
Page 37

The Configuration File
Collapse Spaces
When true, removes repeated spaces from words and omits words containing only spaces.
If a document uses the space character for layout, there may be a lot of repeated spaces in
the output unless this flag is enabled.

Combine Slivers
Enabling this flag may help when dealing with documents containing images that have
been split into many (possibly thousands) of single-pixel strips.

Images are sometimes broken up in this way by the PDF producer in an attempt to reduce
file size. When enabled (the default position) Argus will attempt to identify and merge
image slivers into a single larger image.

Since a PDF contains no information positively identifying image strips, this proce-
dure may in some instances join images that should not be joined or fail to merge
those that should.

Crop White
When true, causes white coloured text to be output as light grey so that it may still be read
when viewed against a white background.

De-hyphenation
Words which are broken at line endings by a hyphen are normally rejoined into a com-
plete word. This may sometimes result in two words which should remain hyphenated
(such as “high-powered”) being incorrectly joined.

Disable this feature to avoid such an error.

Full Page Render Zone
When true causes Argus to automatically add an “Iceni Image Box” annotation to each
page processed. This will cause the entire page to be rendered. When true, the value of
“Ignore Text” is especially important since it will dictate whether or not any text is output
in either the rendered page or the text extracted from it.

When EPS is selected as the image output format, Argus performs a true EPS conversion
rather than a render.

Ignore Text=true (text is rendered
but not exported)

Ignore Text=false (text is exported
but not rendered)
Page 38

The Configuration File
Hebrew
Causes Argus to treat documents as if written right-to-left (as are Hebrew and Arabic).
Lines of text are constructed right-to-left and paragraphs are linked in top-to-bottom,
right-to-left order.

To achieve this Argus flips all x coordinates on the page then treats the page as if it were
western (left-to-right). This means all coordinates including those of images will be mir-
rored horizontally. It will not however, effect the order of image data.

This flag will cause processing to take approximately twice as long per page.

Illustrations
When true, Argus will try to identify regions of pages containing vector artwork - illus-
trations & line drawings rather than photographs. Once recognised, the program can
render the area into an image an output is as a JPEG, PNG etc.

Argus looks for groups of curved segments in attempting to identify such regions. Due to
the simple nature of this detection scheme Argus may identify the wrong area or miss an
area altogether. If this is the case, it can be told about an illustration via an “Iceni Image
Box” annotation. These may be created in the ANNOT PLAN section (see “Page Geom-
etry Dump” on page 21) or added using a demonstration version of Iceni’s Gemini Solo
application - available from www.iceni.com.

Ignore Text
When Argus renders an area of a page that contains text this switch controls whether or
not the text appears in the rendered version or as true text in the text output stream.

When true, text contained in a rendered region is not included in the text output stream,
just in the rendered image.

When false, the text is included in the text output stream but not in the rendered image.

“Full Page Render Zone” on page 38 for an example illustrating this effect.

Layout
Modifies the way that paragraphs and galleys of text are formed to ensure that a larger
number of discontinuous objects are formed. This may improve output when attempting
to preserve layout. It should not be enabled when text is to be reflowed.

The bundled configuration file html/super.cfg uses the layout feature to break-up the
text into as many objects as possible. It also employs “Shatter Document” and “Split
Lines” to further splinter the objects. It then uses line-by-line positioning to attempt to du-
plicate the original layout of the PDF in HTML.

Line Breaks
When set to true (the default is false) Argus will preserve the line breaks observed in the
original document. The “force line break” character sequence (see “Para” on page 56) is
used cause the line-break when needed.

See “[FONT MAP]” on page 44 for a font-specific approach to removing line-breaks.

Para Gap
Vertical gaps between paragraphs are normally discarded on output. If this feature is on,
these gaps cause the forced line-break phrase to be output in an attempt to replicate the
gap. This occurs in addition to normal paragraph formatting. See “Entity Markup” on
page 55
Page 39

The Configuration File
Raw Map Words
When using the word mapping facility (see “Word Map Path” on page 31) Argus will
pass any substituted words through the CHAR MAP (see “[CHAR MAP]” on page 47)
prior to output. In some cases it may be useful to avoid this step when a substituted word
includes HTML formatting commands for example.

Setting this flag to true (the default is false) will cause Argus to omit the final CHAR
MAP stage for substituted words, instead letting characters pass through to output un-
touched.

In order to use this facility effectively the word map file must be carefully constructed to
ensure it does not contain any characters or phrases which are illegal or reserved in the
output format being used.

See “Dealing With Iconic Font Characters” on page 25 for more information.

Span Galleys
A galley as defined in Argus is a vertical group of paragraphs. Argus attempts to link sim-
ilar galleys into reading order.

When false, Galley formatting is output at the start and end of every galley. When true, it
is only output at the start and end of a group of linked galleys.

Speechmark Recognition
The rules of reported speech in English language dictate that a line-break indicates an al-
ternate speaker. Hence it is vital that Argus preserves breaks when they occur in speech.

Enabling this flag causes Argus to detect the presence of quotation marks and preserve
line-breaks in their vicinity. This may fail if the fonts used have non-standard encodings.

Disable this feature for documents not expected to contain reported speech.

Tab Table
When true, Argus assumes that all pages are mainly tabular in nature. It decomposes pag-
es into individual cells rather than trying to forms lines and paragraphs.

When dealing with heavily tabular pages such as stock results, financial reports and in-
voices this flag should be enabled.

The “tabText.cfg” supplied with the distribution relies upon this flag.

Do not used this flag if you wish to export normal pages that contain a few tables.
In this case it is better to mark-up the tables concerned and use the normal
processing options.

Unicode
When enabled, all characters will be translated into Unicode (where possible). Ensure that
any character maps used when enabled, are written for Unicode and not for PDFDoc en-
coding.

When false, characters are encoded internally as PDFDoc encoding. In this case, ensure
all character maps used are compatible with PDFDoc encoding.

If any output text encoding is used such as UTF-8 or Shift-JIS, this option must be set to
true since the encoding mechanism expects all text to be encoded as Unicode internally
to Argus. See “[CHAR MAP]” on page 47 for details of using encodings.
Page 40

The Configuration File
XY Sorting
Column Sorting
No Sorting
true | false

These options change the sorting used by Argus prior to outputting text. They should be
used only when the default method is producing poor results. None of these methods
should be used if “Article Sorting” is enabled.

XY Sorting: a rigid x-y sort is applied to the text on each page. Text at the top-left of the
page will be output first

This is especially useful when text is printed out-of-order on the page - a common occur-
rence when pages include footnotes, superscripts, lists or tables. Pages produced by newer
PDF generators should always be generated in-order but some software still does not do
this.

Column Sorting: text is sorted into columns with text at the top of the left-most column
being output first. This may be useful for processing book-like texts containing two col-
umns of text on each page for example.

No Sorting: text is output in printing order. Adobe Inc. recommends modern PDF crea-
tors produce PDF so that the reading order of text is the same as the printing order. Hence
for modern PDF documents, this approach may produce good results.

[IMAGE STYLE]
This sections contains various flags and settings for controlling the output of images and
rendered regions by Argus.

Alias Limit
number

Text rendered with a size larger than the Alias Limit will not be smoothed. All text small-
er than the limit will be subject to smoothing (except for monochrome output formats).

As the output resolution is increased, more a more text will exceed the given limit until
none is smoothed.

Colour Format
Bitmap | Dithered | Grey | RGB | CMYK

This setting specifies the colour depth of rendered images only - it does not affect embed-
ded images such as photos and scans.

Some colour depths are unsupported in some file formats. For example, CMYK is only
supported by Tiff. Argus will report an error when an inappropriate colour format is spec-
ified for a particular file format.

For EPS file formats, this setting effects only the preview included in the EPS, not the
main image itself.

Copyright
text

Specifies the copyright text to be included inside the image. This is applied to the Copy-
right tag in a TIFF file or the comment tag within JPEG & PNG files. BMP does not sup-
port associated text information.
Page 41

The Configuration File
The definition may include macros.

Example:

Copyright =[AUTHOR];

Comment
text

Specifies the comment to be included within the Comment field of a Tiff, JPEG or PNG
image on output. BMP does not support associated text information.

The definition may include macros.

Example:

Comment =Taken from page [PAGENUM] of [TITLE];

File Format
EPS | Tiff | TiffM | PNG | BMP | JPEG | Progressive | ConvertCMYK | ConvertLab

This option selects the file format used to write images to disc.

“TiffM” selects multi-page Tiff output. This format will generate a single file containing
multiple images. Though few image viewers support multi-page Tiff, it is commonly used
by computer-based facsimile systems.

Use “EPS” for preserving the clip-path and original colour space of embedded images.

Options may be combined together as shown below:

File Format = JPEG Progressive;

File Format = TIFF ConvertCMYK ConvertLab;

By default Tiff output will retain CMYK or Lab colour spaces unless either of the con-
version flags shown above is used.

Greek Limit
number

Text whose size is less than the Greek Limit will not be fully rendered but will instead
appear as a grey box (so called “Greeked” text).

As the render resolution is reduced, more a more text will appear Greeked.

Image Quality
1..100

Dictates the compression level used when writing JPEG files. 100% represents the best
quality available with the JPEG engine included within Argus and is never loss-less.

Scale Mode, XScale, YScale
These three parameters can be used to specify a range of image scaling operations. “Scale
Mode” can be one of the following values:

•None
•Max
•Set
•Percent
•Rez

When scale mode is “Max” the values of XScale and YScale specify the maximum al-
lowed pixel width or height of an image. Images with a side greater than either one of
these limits will be scaled proportionally to ensure it fits within the bounds.
Page 42

The Configuration File
If either bound is zero, it is ignored. For example,

Scale Mode =Max;
XScale =320;
YScale =240;

Ensures that images always fit into a rectangle of 320,240 pixels - useful for preparing
images for the world wide web.

When scale mode is “Set”, the values of XScale and YScale specify exact pixel dimen-
sions to which the image will be re-sampled. This allows non-proportional scaling of an
image. However, either dimension may be specified as zero, in which case it is scaled pro-
portionally with respect to the other dimension.

For example:

Scale Mode =Set;
XScale =320;
YScale =0;

Ensures that all images have an exact width of 320 pixels. Images will be enlarged or re-
duced to fit this measure. The images will retain the correct aspect ratio.

Scale Mode =Set;
XScale =320;
YScale =240;

Will force an image to fit into 320,240 pixels. This will not preserve the aspect ratio of
the image.

When scale mode is “Percent” an image can be scaled by a factor. This may be useful for
example to reduce the size of all images by 50%.

Scale Mode =Percent;
XScale =50;
YScale =0;

Reduced the width (& height proportionally) by 50%.

When scale mode is “Rez” the XScale and YScale values specify the desired resolution
of the output image. In this case, the value of YScale is always ignored - an image cannot
have a distinct x & y resolution.

When adjusting resolution, Argus will sub-sample the image to ensure that it remains the
same physical size when viewed but consists of more or less pixels.

Scale Mode =Rez;
XScale =72;
YScale =0;

Ensures all images are subsampled to achieve 72dpi resolution.

[ZONE CONTROL]
In version of Argus prior to 4.2 all zoning was controlled with a single [DOC FEA-
TURES] flag - “Zoning”. Later version of Argus allow finer control of the way in which
the program zones text.

If Argus reads any configuration file which does not contain a [ZONE CONTROL]
section, all zoning is activated irrespective of the setting of the old-style ‘Zoning’
Page 43

The Configuration File
feature flag.

Boxes
When true, Argus will detect outlines boxes drawn on the page and prohibit text flow con-
nection which cross the boundaries of the box. It is rare that this flag should be set to false.

Vertical Lines, Horizontal Lines
These flags control the way in which Argus uses any straight lines it finds in a page. When
true, a vertical/horizontal line of significant length will be treated as a text flow barrier,
that is, Argus will assume text cannot flow across such a lines.

Newspaper pages often use such lines to given visual clues to the reader about the bounds
of an article. In this case these flags are of most use.

Some newspaper styles use vertical between each galley of text on a page - effectively
revealing to the reader the original galley margins used during page layout. In this case,
“Vertical Lines” should be turned off otherwise Argus will fail to reflow text across col-
umns.

[FONT MAP]
Font maps can be used to ensure that characters from fonts which cannot be converted to
PDFDoc (the internal character encoding used by Argus) are converted to an alternative
form.

For example, the greek letter Delta (∆) available in the “Symbol” font cannot be repre-
sented by a single character in PDFDoc encoding.

However, using a font map it could be converted to “<delta>” for example. It is then a
simple matter to change the text output from Argus using the search and replace features
of any text editor.

The format of a font map is:

[FONT MAP:font name]
Serif = false | true;
Monospace = false | true;
Symbol = false | true;
Ignore = false | true;
Glyph End = text;
Glyph Start = text;
Glyph Names = false | true;
Preserve Line Breaks = false | true;
octal code = text;
ddecimal code = text;
xhexadecimal code =text;
‘a’ =text;/* the single ascii character ‘a’ is the target */
[-- END --]

Using a font map every single character of a font can be mapped to another character or
sequence of characters.

The following is a section taken from the “text.cfg” configuration file. It is part of the font
map for the Symbol font (mapping Symbol encoding to ASCII).

[FONT MAP: Symbol]
Symbol =true;
d032 = ;
d033 =!;
Page 44

The Configuration File
d034 =[.universal];
d035 =#;
d036 =[.existential];
d037 =%;
d038 =&;
d039 =[.suchthat];
d040 =(;
d041 =);
d042 =\x107A;/* Double byte character */
....
[-- END --]

Note that the fontname may include the wildcard characters “*” and “?” which match a
span and a single character respectively. This is useful for matching against an entire fam-
ily of fonts such as “Times*” which will catch Time-Roman, TimesBold, TimesBoldItal-
ic etc.

To avoid ambiguity, wildcard fontname matching will always use the longest match
found. For instance, given two font maps for “Times*” and “TimesR*”, the font “Times-
Roman” would match against the “TimesR*” map even though it could also match the
“Times*” pattern too.

It is important to note that there should be no space after the ‘=’ sign unless you
wish to map a character to ‘space’.

Unicode & Double Byte Mapping
Since Argus will normally operate in Unicode mode, it is possible that some fonts will be
represented as Unicode rather than their native encodings. This is especially true of Sym-
bol and ZapfDingbats which both have standardised Unicode mappings. In this case many
of the entries on the left hand size of a font mapping will be double-byte values. For ex-
ample:

x2021 =[bullet];

If left as Unicode, these characters will appear correctly in any output format capable of
supporting Unicode (not ASCII for example). However, a problem may occur with the
following HTML:

ߥ

On Windows platforms in particular, trying to output a valid Symbol font character by
referencing its Unicode value will fail to produce the correct character if it is rendered in
the Symbol font. The following HTML will work:

ߥ

The way to avoid this problem is to map the Unicode values of Symbol characters back
into the standard Symbol font encoding. This mapping is provided with the distribution
and is called “UniSymbol.fmap”.

The equivalent mapping for ZapfDingbats is not supplied.

The “Ignore” flag
If the “Ignore” flag is set to true, Argus will discard any characters found in the matching
font. This is especially useful for ignoring special fonts used only to provide ornamenta-
tion within a document such as a border.

[FONT MAP:Symbol]
Ignore = true;
Symbol = true;
Page 45

The Configuration File
[-- END --]

Font Attributes
Within a FONT MAP, a number of font attributes may be declared. These attributes tell
Argus about various characteristics of a font and are set to either true or false (the default).

The currently supported attributes are: “Symbol”, “Serif”, “Monospaced”, “Preserve Line
Breaks”.

If “Preserve Line Breaks” is set to true Argus will respect the line breaks found in any line
of text which ends with a word written in the particular font.

Hence, if a paragraph is written entirely in “Courier” and preserve line breaks is true, Ar-
gus will output a line break sequence at the end of each line of text output in the para-
graph.

Examples uses of attributes:

[FONT MAP: Courier*]
Serif = true;
Preserve Line Breaks = true;
Monospaced = true;
Ignore = false;
[-- END --]

The attributes of the standard base 13 fonts (Courier, Times, Helvetica, Symbol and Zap-
fDingbats) are set by default on start-up. These may however be overruled by an appro-
priate entry in a configuration file.

Glyph Name Output
It is possible that two different PDF documents may share the same font but the encodings
of the font in each case are completely different.

For example, given two documents which make use of the � and � symbols from the
“Monotype Sorts” font, it could happen that in one document character code 1 corre-
sponds to � yet in the other, code 2 is used.

This is often as a result of font-subsetting: a process which minimises file size by only
including those characters of a font which are used in a document.

Subsetting fonts is not normally a problem. However when the font in question is a glyph
font - containing non-readable characters such as Symbol and Zapf Dingbats, re-ordering
the font can cause problems.

In order to deal with such instances, a font map would have to be constructed for each
document since each may contain a different ordering of characters.

To avoid this, Argus can output the names of the character glyphs directly instead of the
character codes.

Any glyph names can then be quickly found and replaced using a simple text editor after-
wards.

For example, the line

ΑΒΧ∆ΕΦΓ

in “Symbol” font would be output as

[.Alpha][.Beta][.Chi][.Delta][.Epsilon][.Phi][.Gamma]

A search through the output of Argus for “[.” would quickly find any glyph name. It could
then replaced by something more appropriate.

To enable glyph name output for any font use:

Glyph Names = true;
Page 46

The Configuration File
In the above example, each glyph name was surrounded by “[.” and “]”. This is the default
but can be overridden as follows:

Glyph Start =start text;
Glyph End =end text;

See “Dealing With Iconic Font Characters” on page 25 for further examples of uses of
this feature.

[CHAR MAP]
A character map is used to map Argus internal representation of a character (either Uni-
code or PDFDoc) into one suitable for the desired output format.

This is useful for mapping characters such as “©” to the proper equivalent in the output
format such as “©” in HTML. Or for mapping documents into international encod-
ings such as Shift-JIS, Big-5 or UTF-8.

The format of a mapping entry can take one of four styles:

octal char code = text sequence;
ddecimal char code = text sequence;
xhexadeciaml char code = text sequence
‘<char>’ = text sequence

Examples of these four are:

'}' =\\};
030 =\x0306;
xfb02 =fl;
d24 =';

The numbers on the left hand side correspond to Unicode values (when the “Unicode”
Document Feature flag is set) or PDFDoc encoding numbers (see “Font Encodings” on
page 80).

For octal entry of a text sequence on the right hand side of the equals sign, type a back-
slash ‘\’ character followed by three octal digits. For hex entry, use ‘\x’ prior to the four
hex digits.

Character mapping is only performed on text extracted from PDF documents and not
from text included in any of the macro definitions used throughout such as ‘INCLUDE’.

For example, a portion of a typical HTML character map may look like:

[CHAR MAP]
326 =Ö\;;
325 =Õ\;;
323 =Ó\;;
322 =Ò\;;
321 =Ñ
320 =--;
317 =Î\;;
315 =Í\;;
314 =Ì\;;
313 =Ë\;;
312 =Ê\;;
d65 =\300;
...
[-- END --]

Notice the use of an escaped semi-colon to include the HTML semi-colon in the mapping.
Page 47

The Configuration File
Dbl Byte Esc Start
Dbl Byte Esc End
text

When a character is encountered whose value cannot be expressed in the chosen output
format, Argus will output the character bracketed by the given escape sequence start and
end phrases. In HTML for example, the tokens &#x and ; are used to bracket the hexa-
decimal representation of a Unicode character.

Use these settings to specify the particular escape tokens used in the chosen output for-
mat.

Dbl Byte Format
hex | dec

This setting dictates the way Argus outputs the numerical representation of a character -
as either hexadecimal or decimal. HTML unicode characters are specified using hexadec-
imal. In RTF output, the specification should be in decimal.

This setting and the two above, only come into play when an out-of-range character is be-
ing output. For normal output encoding this means any character whose value is greater
than 255.

Encoding
Encoding name

When an encoding name is specified, all output is sent through an encoding module which
is included in Argus. This module support a wide variety of different output encodings -
see “Encoding Names” on page 89 for a complete list of those supported.

To select an encoding, find the name of the encoding in the encoding names appendix and
enter it after the equals sign. For example:

Encoding = utf-8;

The MacOSX version of Argus supports None and UTF-8 encodings only.

Removing Line Breaks
Line breaks are always preserved if the “Line Breaks” flag is true. See “Line Breaks” on
page 39.

Line breaks may be preserved on a font-by-font basis using the FONT MAP mechanism.
See “[FONT MAP]” on page 44 for more information.

[RESET ON]
This section controls the reset behaviour of the text output sub-system of Argus. When
reset, the current state of text output is assumed to be plain, unformatted text and the rel-
evant mark-up phrases needed to achieve this state are output. The meaning of each entry
is given below:

Reset Modes

MODE ACTION

Page Reset at the start & end of each page output

Story Reset at the start & end of each story output
Page 48

The Configuration File
The default behaviour is for all to be “on” ensuring that whenever a logical section bound-
ary occurs, all mark-up is switched off, then on again. Although this produces verbose
output for formats such as HTML, it ensures correct syntax is maintained for more strict
formats such as XML.

[LIMITS]
This section allows control over various internal limits governing specific aspects of be-
haviour such as kerning and paragraph formation. An explanation of the meaning of every
limit is beyond the scope of this manual. However the few that are more understandable
are documented. The rest are mentioned for completeness only and should not be altered
unless under guidance from a member of the technical support staff at Iceni Technology.

MaxWordsInHeading
MinBuffSize
BigGapRatio
BreakOutLines
BreakOutLen
FontSizeDiff
ParaFontDiff
TableSpacingFactor
MinFontSize
MinAnalAccuracy
FontSizeGapRatio

All values integers.

MinFontSize
Text falling below the minimum font size will be ignored by Argus during text output.
Default value 4pts.

Table Spacing Factor
Dictates the amount of space required between words before Argus assumes that a table
column exists. Only required when using table output.

A higher figure (1 or 2 for example) means Argus will create table columns even for small
inter-word gaps. This may be useful when dealing with tables formatted in such a way

Galley Reset at the start & end of each galley of text - a
grouped column of paragraphs

Headline Reset at the start & end of each headline output

Caption Reset at the start & end of each caption output

Para Reset at the start & end of each paragraph output

Table Reset at the start & end of each table output

Row Reset at the start & end of each row of each table

Cell Reset at the start & end of each cell within each table

Pic Reset mark-up style when a picture link is output

StoryText Reset at the start of the body text of a story

Reset Modes

MODE ACTION
Page 49

The Configuration File
that the inter-column gap is occasionally very small.

The downside is that it may create columns when none is needed. However this will prob-
ably not effect the overall appearance of the table, just it’s complexity.

FontSizeGapRatio
A ratio used by Argus when joining word fragments. Altering this value may be useful if
your output contains many broken words due to unusually wide inter-character spacing.

Decrease the value to join more words together. Increase it to split more words apart. The
default value is 89.
Page 50

The Configuration File
Interactive Forms

[WIDGET]
This section can be used to dictate the output format used for elements of interactive
forms embedded within documents. Using a combination of macros, both the form ele-
ments and their contents can be output - or any combination of the two.

Form elements are output as they are encountered. This order may not correspond to the
reading order of the page - the elements may all be output at the end of a page for example.
If this is the case, you may wish to consider enabling sorting of the output. See “XY Sort-
ing” on page 41.

When Argus encounters a form, the formatting specified in the [WIDGET] section is in-
voked.

For example:

[WIDGET]
Start = <FORM>;
End </FORM>;
[-- END --]

The above example will output the HTML elements to signal the start and end of an in-
teractive form.

To output individual elements of the form, append the name of the element type to the end
of WIDGET: to create a new section. Argus supports six element types named as follows:

[WIDGET:TEXT]
[WIDGET:BUTTON]
[WIDGET:CHECKBOX]
[WIDGET:RADIO]
[WIDGET:LIST]
[WIDGET:COMBO]

Each type of section controls the output of that particular kind of form element (widget).

In order to output anything within these sections, you will have to employ the widget mac-
ros created specially for form element output. These are mentioned here but detailed fully
in the Macros section of the manual.

WIDGETKEY <keyname>
Outputs the named value obtained from the widget’s dictionary.

WIDGETOPTION
Outputs the definition of the current option in a multiple-choice widget such as a list or
combo box.

WIDGETINDEX
Identifies the current option within a multiple-choice element.

WIDGETEXPORTVALUE
The value exported by the form element when it is in its ‘on’ state.

ISEQUAL <a> <true expression> <false expression>
If <a> equals then <true expression> is output. Otherwise the false expression is out-
put.

Using the WIDGETKEY macro you can access any of the numerous values contained
within each field element. However, a little explanation of the following values may be
of help:

“T” The name of a field. For example “surname” or “age group”

“TU” An optional user-friendly name used for navigation assistance

“V” The value of a field.
Page 51

The Configuration File
For a complete list of all form element keys, see the current version of the official PDF
specification available from Adobe’s web site.

[WIDGET:TEXT]
The following will output the HTML definition of a text input field. The field will be
named as in the PDF and will be pre-filled with any value found in the PDF.

[WIDGET:TEXT]
Start =<INPUT type=text name=[WIDGETKEY T] value="[WIDGETKEY V]">;
End =</INPUT>;
[-- END --]

To output just the contents of the field as text (not as an active HTML form element) use
the following:

[WIDGET:TEXT]
Start =[WIDGETKEY V];
End =;
[-- END --]

[WIDGET:BUTTON]
The following example outputs the definition of a interactive button in HTML.

[WIDGET:BUTTON]
Start =<INPUT type=button name=[WIDGETKEY T] value="[WIDGETKEY MK.CA]">;
End =</INPUT>;
[-- END --]

[WIDGET:CHECKBOX]
The following example outputs the HTML definition of a checkbox and checks it if it was
checked in the PDF.

[WIDGET:CHECKBOX]
Start =<INPUT type=CheckBox \

name=[WIDGETKEY T]
[ISEQUAL [WIDGETKEY V] [WIDGETEXPORTVALUE] CHECKED]>;

End =</INPUT>;
[-- END --]

In this example the ISEQUAL macro is used to ensure the checkbox is checked if the val-
ue of the checkbox is “yes”.

[ISEQUAL [WIDGETKEY V] [WIDGETEXPORTVALUE] CHECKED]

This reads as “if (checkbox value) is (its ‘on’ value’) then output ‘CHECKED’”

By default the ‘on’ value for a checkbox is ‘yes’. However, this can be set to any text by
the form’s creator which is why the [WIDGETEXPORTVALUE] macro is used.

If you just want to output the value rather than define a working HTML checkbox then
the following would be sufficient:

...
Start =[WIDGETKEY V];
...

[WIDGET:RADIO]
Radio buttons are typically grouped so that only one button in the group may be selected.
PDF stores each button separately but includes in each a reference to the group to which
it belongs. The record for the group itself includes a list of all its members plus the iden-
tifier of the currently selected member.

The following will output a definition of a radio button in HTML. It will use the group-
name to name buttons so they respond correctly within a group. It will also ensure the cur-
Page 52

The Configuration File
rently chosen button is chosen in the HTML output.

[WIDGET:RADIO]
Start =<INPUT type=radio \

name=[WIDGETKEY T] [ISEQUAL [WIDGETKEY V] [WIDGETINDEX] CHECKED]>;
End =</INPUT>;
[-- END --]

In this example the ISEQUAL macro is used to ensure only the one button per group is
selected.

[ISEQUAL [WIDGETKEY V] [WIDGETINDEX] CHECKED]

[WIDGETKEY V] gives the id of the group’s chosen button. [WIDGETINDEX] gives
the id of the current button being output within the group.Hence the ISEQUAL expres-
sion can be read as:

“if (group’s chosen button) is (this button) then output ‘CHECKED’”

[WIDGET:LIST]
[WIDGET:COMBO]
These multiple choice elements differ from all others in that only one element exists but
it contains multiple options within it. This means the Start/End formatting will be used
only once for the whole element irrespective of the number of options it contains.

To cope with this, these sections have another formatting control called “Middle” which
is output for each option.

[WIDGET:LIST]
Start =<SELECT MULTIPLE name=[WIDGETKEY T]>;
Middle =<OPTION [ISEQUAL [WIDGETKEY V] [WIDGETINDEX] SELECTED]>\

[WIDGETOPTION];
End =</SELECT>;
[-- END --]

In this example, the ‘Start’ format defines a new HTML list box with the name given to
it in the original PDF form.

The ‘Middle’ format then causes each option of the list box to be defined.It also ensures
that the option chosen in the PDF is also marked as “CHECKED’ in the output. This is
done using the same technique as was used for radio buttons.
Page 53

The Configuration File
Character Markup
The physical mark-up sections control the text to output when styled text is encountered.
Styled text is text that deviates from plain black such as bold, italic or coloured text.

The mark-up sections are:

•BOLD MARKUP
•ITALIC MARKUP
•MONO SPACED MARKUP
•SERIF MARKUP
•SANS SERIF MARKUP
•COLOUR

None of these sections is used when class based markup is enabled. See “Class-
Markup” on page 37.

Each section has the following format:

Start = <formatting>;
End = <formatting>;
Nesting Level = <number>;

The value of the start tag will be output when such styled text is encountered. The end tag
will be output either at the end of such a section of text or when nesting rules requires it.
Both the tags may include arbitrary text as well as macros.

The nesting Level parameter is a small number indicating the nesting order of the phrases.
The outermost nesting level is 0. Higher numbers occupy smaller and smaller nesting
scopes. A higher numbered phrase cannot extend beyond the scope of a lower numbered
phrase.

Example of HTML mark-up:

[BOLD MARKUP]
Start =;
End =;
Nesting Level = 3;
[-- END --]

[ITALIC]
Start =<i>
End =</i>;
Nesting Level =2;
[-- END --]

In this example, the nesting level of the italic mark-up phrase is lower than that of the bold
mark-up. This means that a section of bold mark-up will not overlap the italic mark-up.
Instead of getting output such as this:

plain then bold, then <i>italic,</i> bold and plain

the output is more modular and less open to misinterpretation by HTML browsers:

plain then bold, then <i>bold italic</i>bold and plain

With careful use of nesting levels, the system can produce output which conforms to quite
complex nesting conventions such as those of XML.
Page 54

The Configuration File
Entity Markup
The entity sections control the text that is output at the start and end of discrete parts of a
document such as page, paragraph etc.

The sections are:

Each section has the following format:

Start = <formatting>;
End = <formatting>;

With the exception of the style section, each of these sections is described below. The
style section is rather more complex. See “[CSS STYLE]” on page 57 for a description.

When dealing with a document that has a valid structure tree (a “tagged” PDF), Argus will
create new entities from all of the entity names listed in the structure tree. See “Processing
Structured Documents” on page 26 for information on accessing these imported entity
definitions.

Document, Page
Output at the start and end of each page and each document. When thread-based output
is in effect, the behaviour of the Page section changes.

Story
Only occurs when Argus determines that a body of text should be grouped with a headline
and byline to form an article or ‘story’.

The ability of Argus to achieve this grouping depends entirely upon the style of document
given as input and the setting of the “Article Sorting” flag.

A typical newspaper page may group very well. On the other hand, a book or memo which
does not naturally divide into articles would not yield any story groupings. If “Article
Sorting” is disabled, no story grouping is done.

Headline, Byline, Story Text
Only generated from a story grouping. Hence only available when “Article Sorting” has
been enabled and then only when suitably formatted input is encountered.

Bookmark
Only used when “Bookmarks=true” in the [ARGUS CONTROLS] section - See “Book-
marks” on page 28. The bookmarks for document can form a tree structure with sub-sec-
tions containing further bookmarks or further sub-sections (as the bookmarks in this
document do).

There are four parts to this section controlling the way the bookmark (outline) tree is out-
put:

Tree Start, Tree End
These specify the formatting to be output at the start and end of the entire bookmark tree
and for any nested trees within it.

BOOKMARK
BYLINE
CAPTION
CELL
DOCUMENT
GALLEY
HEADLINE
PAGE

PARA
PIC
ROW
STORY
STORY TEXT
CSS STYLE
TABLE
Page 55

The Configuration File
Entry Start, Entry End
These specify the formatting to output for leaf nodes of the bookmark tree.

An example of how to output a bookmark tree using basic HTML (the list operator) is
shown below:

[BOOKMARKS]
Tree Start =; /* start new (sub) list */
Tree End =; /* end of (sub) list */
Entry Start =; /* list item - has no sub list */
Entry End =; /* end list item */
[-- END --]

Caption
When argus has determined that a picture has a related caption, this formatting is used for
the caption. Only available when ‘Captions’ is enabled in the “Document Features” sec-
tion.

Para
The formatting used to render the start and end of a paragraph. The PARA section has an
additional key called “Forced Break”. This may be used to define the formatting to output
when a visible line-break is to be rendered. This may be used for example, to create par-
agraph gaps when the “Para Gaps” feature is enabled in the “Argus Controls” section.

Table, Row, Cell
When “Tabulated Output” is enabled, these are the formatting sections used to render the
table in the desired output format.

Pic
The formatting to output when a picture is encountered. This is typically used to generate
HTML links to image data in the text. Only the ‘Start’ tag is used within this section, the
“End” tag is ignored.

For example, producing an HTML link with the picture section:

[PIC]
Start =;
End =;
[-- END --]

Producing paragraph output in HTML:

[PARA]
Forced Break =
;
Start =<P>;
End =</P>;
[-- END --]

No binary picture data is output by this macro. That is done separately from text
output when the “Image Output” flag is enabled in the [ARGUS CONTROLS] sec-
tion. See “Processing Structured Documents” on page 26

[CLASS SPAN]
This section is used to specify the text to be output at the start and end of a class markup
Page 56

The Configuration File
change. It is used only when “Class Markup” is enabled and when a class catalogue has
been constructed using definitions from the [CSS STYLE] section.

When Class Markup is enabled none of the character markup sections are used by Argus.
So any definitions for Bold, Italic, Font size etc. are ignored. Instead these effects are ren-
dered using the class markup mechanism.

The only exception to this is super/sub-script markup which is not available at all when
using the class mark-up mechanism.

An example of a class span section suitable for use with HTML output is show below:

[CLASS SPAN]
Nesting Level =10;
End =
;
Start =;
[-- END --]

See “[CSS STYLE]” on page 57 for more information on using this mechanism.

[CSS STYLE]
The css style section has been designed to allow creation of a wide variety of style sheets
for use in displaying context extracted by Argus.

The distribution includes configuration files which generate style sheets for HTML CSS1
and CSS2 as well as RTF. However, other types of style sheet may be created using the
same mechanism.

Four basic style sheets may be created; these are colours, galleys, pictures, fonts. In addi-
tion a special style sheet based upon class-based markup can be created.

For example, to create a list of all text colour used within a document, the following sec-
tion definition could be used:

[CSS STYLE]
Path =None;
ColorDef ={\\red[COLOR red]\\green[COLOR grn]\\blue[COLOR blu]\;};
[-- END --]

The value of ‘ColorDef’ defines a single row of the eventual colour table. It will be output
once for each text colour present in the document.

Though the above example defines the format for a row of a table, to actually output the
entire table the INFOTABLE macro is required. See for a full explanation of this and oth-
er related macros.

The following is a definition of a RTF [DOCUMENT] section which includes the colour
table:

[DOCUMENT]
Start =
{\\rtf1

{\\colortbl
{\\red0\\green0\\blue0\;}
[INFOTABLE ColorDef]
}

};
[-- END --]

For the basic four table types, the table output has the same number of rows as there are
relevant items. So for a colour table there will be enough rows to catalogue all text colours
used in a document. For the font table, enough rows to catalogue every font and size com-
Page 57

The Configuration File
bination etc.

The current “row number” for each table as it is being output is given by the IINDEX
macro.

For the special table called “GenSetDef” it will contain as many rows as their are combi-
nations of font, size, colour and text style (bold, italic etc.). Hence, this special table can
be used instead of the basic four to catalogue every variation of text used throughout a
document - exactly what is required for a well constructed cascading-style-sheet.

See the various configuration files included with the distribution for examples of using
this section.

Path
pathname

The full pathname of the output file for style information. One output file will be gener-
ated for each document converted by Argus.

The pathname may include macros.

If no external style sheet is required, set Path to “None”.

Example:

Path =c:\\argusout\\[FILENAME].css;

Format
text

The text to be written in the output file specified by “Path” (see above). When no external
file is being created (Path=None) this setting is ignored.

Example:

Format =
BODY {font-size: [FONTBASE]px\;}
[INFOTABLE FontDef]
[INFOTABLE ColorDef]
;

ColorDef
text

Defines the format text to be output for each font colour used within the document.

The format text will be output numerous times as needed by the INFOTABLE macro.

For example:

ColorDef =.cstyle[IINDEX]
{ color: #[COLOR red hex][COLOR grn hex][ICOLOR blu hex]\; };

If a document uses three text colours - black, red & white for example, then three colour
definitions will be output by expanding the “ColorDef” formatting text three times.

Within the ColorDef format, normal document macros may be used.

FontDef
text

Defines the format text to be output for each font and font size combination used within
the document.

The format text will be output numerous times as needed by the INFOTABLE macro.

For example:
Page 58

The Configuration File
FontDef =.fstyle[IINDEX]
{

font-family: [FONTNAME], [HTMLFONTFAMILY]\;
font-size: [FONTSIZE]px\;
line-height: normal\;

}
;

Assuming a document consists of two fonts and uses each at two different sizes, the IN-
FOTABLE macro will expand the format of FontDef 4 times - once for each font and font
size combination.

Within the FontDef format, normal document macros may be used.

GalleyDef
ParaDef
text

Defines the format text to be output for each galley or paragraph of text created on the
current page being output.

A galley is the name given to a vertical group of paragraphs. In a single column essay-
style document for example, each page would probably be treated as a single galley. In a
newspaper style document, each page would probably contain numerous galleys corre-
sponding to the columns of text in the original printed version.

Since the GalleyDef text is output for each galley on a page, there needs to be a current
page in scope when the text is parsed. This means that the GalleyDef format text cannot
be invoked in places which do not implicitly define a current page.

Hence you cannot use the GalleyDef text in the [DOCUMENT] section or the [CSS
STYLE] section “Format” text.

For example, the following will produce a “Not In Scope” error:

[DOCUMENT]
Start =[INFOTABLE GalleyDef];
End=;
[-- END --]

Example usage of GalleyDef:

GalleyDef =.gstyle[PAGENUM]X[IINDEX]
{

position: absolute\;
left: [GALLEYPOSX]px\;
top: [GALLEYPOSY]px\;
width: [GALLEYWIDTH]px\;
height: [GALLEYHEIGHT]px\;

}
;

This is the HTML4 definition required for exact positioning of galleys on a page.

Within the GalleyDef format, normal document macros may be used.

PicDef
text

Defines the format text to be output for each image box created on the current page being
output.

The format text will be output once for each image in the current page by the INFOTA-
BLE macro.

Since the PicDef text is output for each image on a page, there must be a current page in
Page 59

The Configuration File
scope when the text is expanded. This means that the PicDef text cannot be invoked in
places which do not implicitly define a current page.

Hence you cannot use the PicDef text in the [DOCUMENT] section or the [CSS STYLE]
section “Format” text.

Example usage of PicDef:

PictureDef =.pstyle[PAGENUM]X[IINDEX]
{

position: absolute\;
left: [POSX]px\;
top: [POSY]px\;
width: [WIDTH]px\;

height: [HEIGHT]px\;
clip: rect(0, [WIDTH], [HEIGHT], 0)\;

}
;

This is the HTML4 definition required for exact positioning of pictures on a page.

Within the PicDef format, normal document macros may be used.

The macros returning width and height detail the visible area of the image. That is, the
portion of the image remaining after clipping. This may be different from the actual size
of the picture stored in the document.

GenSetDef
text

Defines the text to output on each row of the class-based table. The INFOTABLE macro
will output one row for each font, size, colour & style combination found in the document.

This table is intended for use in constructing class-based style sheets such as those re-
quired for the CSS2 format.

The following example shows a definition suitable for use in a CSS1 style sheet:

GenSetDef =
#textStyle[IINDEX] {
font-size: [FONTSIZE %]%\;
[IGISBOLD "font-weight: bold\;"]
[IGISITALIC "font-style: italic\;"]
[IGISSUPSCR "vertical-align: super\;"]
[IGISSUBSCR "vertical-align: sub\;"]
[IGISBASECOL "*" "color: #[COLOR]\;"]
};

See the html configurations css1.cgf and css2.cfg included with the distribution for fur-
ther examples of using this kind of table.

INFOTABLE
format-name

This macro is the mainstay of the style output mechanism. Given the name of a format
such as “ColorDef”, the macro will output the format text for each item relevant to that
format.

The currently supported format names are
Page 60

The Configuration File
•GalleyDef
•PicDef
•ParaDef
•FontDef
•ColorDef
•GenSetDef

These table definitions are described in the proceeding pages.

[FONT BANDS]
This section allows the definition of size-bands representing ranges of font sizes. All text
encountered within the PDF will be categorised into these bands on the basis of font size,
with band 1 representing the largest font size in the document. The normal band is deemed
to represent the body-text of a document or page.

The format of the section is:

[FONT BANDS]
Normal Band = number;
Number of Bands = number;
Font BandN Nesting = number;
Font BandN Start = formatting text;
Font BandN End = formatting text;
[-- END --]

For example, given that simple HTML output is required, a number of bands may be used
to map input fonts to the standard H1, H2 etc. of HTML:

[FONT BANDS]

Normal Band = 3;
Number of Bands = 4;
Font Band1 Nesting = 0;
Font Band1 Start = “h1”;
Font Band1 End = “/h1”;
Font Band2 Nesting = 0;
Font Band2 Start = “h2”;
Font Band2 End = “/h2”;
Font Band3 Nesting = 0;
Font Band3 Start = “”;
Font Band3 End = “”;
Font Band4 Nesting = 0;
Font Band4 Start = “<SMALL>”;
Font Band4 End = “</SMALL>”;
[-- END --]

If this style of font size classification is not required, setting the number of bands to 1 with
a font information macro as the format will reproduce the fonts used in the original doc-
ument.

For example:

[FONT BANDS]
Normal Band = 1;
Number of Bands = 1;
Font Band1 Nesting = 0;
Font Band1 Start = “”;
Font Band1 End = “</FONTSIZE>”;
[-- END --]

See the description of the FONTSIZE macro in the macros section for details of what it
can do.
Page 61

The Configuration File
Page 62

Argus 5.1
USING MACROS
In many of the sections detailed previously, it has been noted that macros may be included
in the formatting text. These macros represent a convenient way of enriching the informa-
tion output by the system.

The format for a macro is:

[macro-name <arguments>]

where <macro name> is one of those given in the table below and <arguments> is any
number of arguments (depending upon the macro) or another, nested macro. In general
macro names are case sensitive so care must be taken when typing them.

Multiple arguments are separated by whitespace, so to include a space within an argu-
ment, enclose it within single or double quotes.

To include the open bracket symbol itself in output, use the sequence ‘[[‘ - double open
bracket. This is not necessary for the closing bracket which may appear on its own in any
case.

This example show the definition of a simple information header at the top of each page:

[PAGE]
Start =Page [PAGE], extracted from [TITLE]
On [TODAY ‘%Y, %M, %d’]
Bounding Box [[[POSX] [POSY] [WIDTH] [HEIGHT]]
;
End =----------------- END PAGE ------------------
;
[-- END --]

Setting up HTML-style links to images in text output:

[PIC]
Start =;
End =;
[-- END --]

In the following pages is a brief description of every macro available. More information
is presented after the summary.

Documentation Conventions
In the detailed descriptions that follow, optional macro parameters are signified using <> .

Arguments shown within quotes are literal and when used should be typed as written.

Utility Macros

CHCASE
“upper” | “lower” | “title” | “off”

Controls the case change filtering associated with the currently active output map. By de-
fault the filter is “off” and no changes are made. Giving any of the other three parameters
will arm the filter causing all subsequent text extracted from the document and output us-
ing the current output map to be converted to the required case.

For example, to ensure that all story headlines appear in upper case:

[HEADLINE]

Start =[CHCASE upper];
End =[CHCHASE off];
Page 63

Argus 5.1
[-- END --]

COUNTER
<“set” value> | <+/-value>

Without any arguments, returns the value of a counter (initially zero). The value of the
counter may be reset using the “set” argument and inc/decremented by supplying an in-
teger value.

FTRUNC
filename

Ensures that the given filename is short enough to be valid under a Macintosh system. Un-
der MacOS Classic, filenames must be 32 characters or less.

HEAD
pathname

Returns the given pathname up to the final component - the filename. See TAIL.

For example:

[HEAD /one/two/three/four.txt]

yields:

/one/two/three

INCLUDE
filename <“true”>

Includes the contents of the specified file in the output of the current document. The
filename argument may be an absolute path or relative to the current working directory.
For convenience, the filename parameter can itself be made up from other macros.

If the named file does not exist or cannot be read, the default behaviour is to continue
without error. Adding the true argument will force an error in this situation.

For example, given a PDF with a filename of “manual. pdf”, the following line would in-
struct the system to read a file called “descriptions/ manual.txt” from the current working
directory:

[INCLUDE ‘descriptions\[FILENAME].txt’]

There is no upper limit on the amount of text that will be read from a file in this manner.
All text included in this way bypasses the character mapping stage.

MARKUP
“on” | “off”

Controls the output of text styling phrases (mark-up phrases). By default out is enabled
(is “on”). When disabled by issuing this macro with “off” as its argument, it remains dis-
abled until a corresponding “on” is encountered.

When off, no text styling is output at all. This includes font size and colour information
as well as styling such as bold and italic.

For example, to ensure that story headlines are output with no applied styling:

[HEADLINE]
Start =[MARKUP off];
End =[MARKUP on];
[-- END --]
Page 64

Argus 5.1
MEDIACHANGE
true <false>

Returns the true or false parameter depending upon whether or not the page size has
changed from one page to the next.

If the true parameter is “*” it is ignored.

REPEAT
count text

Outputs the given ‘text’ ‘count’ times.

SECTION
“on” | “off”

Controls the output of section phrases such as paragraph, caption and table sequences. Be-
haves in a similar manner to MARKUP.

TAIL
filename

Returns the final component of a pathname - the filename. See HEAD.

For example:

[TAIL /one/two/three/four.txt]

yields:

four.txt

TODAY
TOMORROW
YESTERDAY
<format>

Without the optional format parameter, the relevant date is output in a numeric day/
month/ year format (with the slashes). The format of the date is dependent upon the plat-
form on which the system is running.

Use the format parameter to specify an alternative style of output.

VALUE
key

Returns the value of the given user-defined key. Keys may be defined using the Argus
SDK call icnArgusValueAdd. Please see the SDK reference manual for details of creating
macro keys.

Document Information Macros

AUTHOR
CREATED
MODIFIED
<format>
Page 65

Argus 5.1
CREATOR
KEYWORDS
PRODUCER
SUBJECT
TITLE
Causes the respective document information dictionary entry to be output. These keys
represent the same information as is displayed in the “General Document Info” dialogue
found in the File menu of Acrobat Exchange.

Note that although a standard date format is defined in the PDF Mark Reference Manual,
some document generators adopt their own format (often plain English). The upshot being
that when such a non- standard date is encountered, the plug- in will not be able to re-
format it and will ignore any format parameter given. This only applies to the date pro-
ducing macros, MODIFIED and CREATED.

To obtain values from non-standard keys within the document information catalogue, use
the KEY macro - see page 66.

CLEAN_FILENAME
The filename of the current PDF with spaces replaced by underscores. Provided for use
in creating image links since some web browsers will not allow image filenames to con-
tain space characters.

FILENAME
Outputs the final component of the path name of the current PDF minus the “.pdf” exten-
sion.

KEY
keyname

Given a key name will return associated value in the document’s information dictionary.
The dictionary (if present) holds information such as creation date, author, title etc. and
is normally accessed using the AUTHOR, TITLE, SUBJECT... macros.

Use this macro to access other, non-standard key values - perhaps those added during
some special production process.

PAGENUM
<offset>

Outputs the current page number being processed. Numbering starts at 1 but can be mod-
ified with the optional offset parameter. This may a positive or negative integer.

PAGELABEL
Outputs the label or logical page number given to a page. From PDF version 1.3 onwards
pages can have a label as well as their implicit physical page number.

For example, the initial pages of a document may have page labels in Roman numerals -
ii, iii, iv, etc. with all following pages being numbered using Arabic numerals - 5, 6, 7...
etc.

The output of this macro is not always a number but can contain text as defined by the
PDF creator. If a page has no label defined, no output is generated.

PAGECOUNT
Returns the number of pages in the document.
Page 66

Argus 5.1
PATHNAME
Outputs the full path name of the current input pdf without any modifications.

THREAD
Outputs the name of a the current thread. The name of a thread is defined by the applica-
tion creating the PDF or by a user from within Acrobat using the thread tool.

This macro is available within the DOCUMENT and PAGE entity sections only when
outputting in thread-based mode. See “Output Threads” in “Argus Controls”.

THREAD_TITLE
THREAD_SUBJECT
THREAD_AUTHOR
THREAD_KEY
<keyname>

Obtains the Title, Subject and Author values form the current thread’s information dic-
tionary.

To access any other non-standard key value from the dictionary use ‘THREAD_KEY’
which requires the key name as its argument.

THREAD_ID
Returns the index number of the current thread. This number is normally assigned to the
thread by the application that created it.

Font & Character Information Macros

COLOR
<“red”|”grn”|”blu”> <“hex”| “%” | “dec”>

Takes two parameters the first of which can be red, grn or blu (for red green or blue) and
a second parameter that can be hex, “%”.

The second parameter instructs the macro to display its result as a hexadecimal (00..ff),
decimal (0..255) or percentage value (0..100). The default when nothing is specified is
hexadecimal.

Default setting with no parameters is to output the concatenated values of red, green and
blue (in that order) as hexadecimal.

FONTFAMILY
FONTBASEFAMILY
< “html” | “rtf” >

FONTFAMILY returns an approximate value for the family name of the current font.
FONTBASEFAMILY returns the family for the most common font in the document.

The family name is derived from the font name by using only the first complete word of
the name.

For example,

a font name of “Minion-Bold” returns a font family of “Minion”
a font name of “Swiss227” returns a font family of “Swiss”

Though this may not be the actual name of the font family, in many cases it will be close
Page 67

Argus 5.1
enough.

When the “html” argument is supplied, the result is one of the standard font class names
defined for HTML - “Serif”, “Sans-serif”, “monospace” and “symbol”

Example font band definition:

[FONT BANDS]
Font Band1 Nesting =0;
Font Band1 End =;
Font Band1 Start =<FONT FACE="[FONTNAME], [FONTFAMILY], [FONTFAMILY html]”
SIZE="[FONTSIZE html]">;
One Size Per Word =false;
Normal Band =1;
Number of Bands =1;
[-- END --]

Similarly when the “rtf” argument is supplied, the result is one of the standard class names
used in RTF - “nil”, “roman”, “swiss”, “modern”.

FONTNAME
<“index”>

Returns the name of the current font. This is the complete name of the font including any
bold or italic nomenclature.

If the optional word “index” is supplied, then instead of the font name being produced an
index number is given. This index corresponds to an entry in the font table held within the
system for the pages so far analysed by the system. The font table itself can be output in
an RTF compatible format using the FONTTABLE macro.

FONTSIZE
<“rtf” | “html” | “%”> <“adjust”>

FONTBASESIZE
<“rtf” | “html” | “%”>

With no arguments, FONTSIZE returns the size of the current font rounded off to the
nearest whole Point (Postscript Point). If one of the three optional conversion parameters
is supplied, the format of the size returned changes as follows:

When the optional literal argument “adjust” is supplied, the resulting size is modified in
order to cap the size of very large fonts. This may produce better results when attempting
to preserve layout.

FONTBASESIZE returns the size of the most common font in the document. In this case
the “adjust” argument is nonsense and should not be used.

WORD OUTPUT FORMAT

html A number between 1 and 7 is returned. 1 representing the small-
est font size, 7 the largest and 3 size regarded as “normal” for
the document.
This is the format expected by the tag in HTML 3.2

rtf Font size in twips suitable for use in RTF output

% Font size as a percentage of the base-font size for the document.
The base-font is the font deemed to be the most commonly
occurring font/size combination in the document.
Page 68

Argus 5.1
HTMLFONTFAMILY
Returns the generic name for the family of the current font. Names returned are suitable
for use within HTML FONT tags - sans-serif, serif, monospace.

LEADING
<“in” | “cm” | “mm” | “tw” | “%” | “em” | “rtf” | mult>

Returns an approximate value for the leading (inter-line gap) between lines of text in a
paragraph. Optional unit conversions are inches (in), centimetres (cm), millimetres (mm),
twips (tw), percentage of font size (%), printer’s “em” (em) and rtf compatible units (rtf).

An optional numerical scaling factor (mult) can be supplied.

SYLKFORMAT
Returns an index into a font format table for use with SYLK based output. See sylk.cfg
for an example of its usage.

Geometry Macros

ALIGN
left centre right full

Given up to four arguments, outputs the argument corresponding to the text alignment of
the current paragraph.

For example, to correctly align a table cell in HTML:

<TD align=[ALIGN left centre right]>

When processing a document with structure tags, Argus will examine the TextAlign at-
tribute from the Layout tag.

For non-structured documents, the result is always ‘left’.

INDENT
text

Outputs the given text as many times as their are characters in the current paragraphs first
line indent. A typical usage would be INDENT “ “ to output the space character a number
of times.

INDENTSIZE
<multiplier>

Output the size of the first line indent of the current paragraph. Is typically used in con-
junction with the INDENT macro to render first-line indents in text.

The <multiplier> can be used as a numeric scale factor.

MARGINSIZE
“left” |“right” <mult>

Returns the size of either the left or right margin of the current paragraph. The margin is
computed by subtracting the left or right extent of the paragraph from the corresponding
edge of the containing galley.

The first parameter (which is mandatory) dictates which margin is returned - left or right
side of the paragraph. The second parameter is optional and allows for a scaling value.
Page 69

Argus 5.1
This may be used for example to convert the result to twips by supplying a scale of 20.

WIDTH PAGEWIDTH
HEIGHT PAGEHEIGHT
POSX PAGEPOSX
POSY PAGEPOSY
POSYR
<“cm” | “mm” | “tw”| “in”><“clip”><“adjust”><mult>

When no unit arguments are given, the return value will be Postscript Points - approxi-
mately 1/72 of an inch.

The “PAGE...” macros return information about the current page’s crop box. The origin
for measurement is 0,0 - the bottom-left of the page media.

POSX is the absolute left hand side of the current object.

POSYR is the absolute coordinate of the bottom of the current object. The origin of its
coordinate system being 0,0 - the bottom-left of the page media.

To obtain x,y coordinates relative to the crop use the following constructs:

[ADD [POSX] -[PAGEPOSX]]

[ADD [POSY] -[PAGEPOSY]]

POSY is the distance from the top of the page’s crop box to the top of the current object
- this is useful for generating HTML positioning information and is maintained for back-
wards compatibility with older versions of Argus.

POSY is equivilent to:

[ADD [PAGEHEIGHT] -[ADD [POSY] [HEIGHT]]]

The results may be converted to other units via the optional arguments: cm - centimetres,
mm - millimetres, tw - twips, in - inches.

The optional “adjust” argument causes the width result to be modified in such a way as to
yield better results when preserving page layout. It should not be used if accurate meas-
urements are required and has no effect on the “PAGE...” macros.

An optional numeric scale factor may be supplied - the <mult> argument.

When in the scope of an image, the WIDTH and HEIGHT returned relate to the entire
bbox of the image not just the visible portion (though in some cases they will be the
same). To obtain the bbox of just the visible portion use the “clip” argument.

Hyperlinks & Bookmarks

BOOKMARK_TITLE
Outputs the title of the current bookmark. Only available within the BOOKMARKS en-
tity section. Can be used to help produce a formatted list of bookmarks with their titles,
hypertext linked to the relevant place within a document.

HYPERDEST
IFHYPERDEST
These macros are generally used together to deal with the instance of a hyper link itself
being the destination for another hyperlink. Typical usage would be:

Page 70

Argus 5.1
which allows a href to include a name for parts of the page that are both links and desti-
nations. This happens for example with the Quick Start Guide, page 1, when synth book-
marks is on.

NESTING
Returns the nesting level of the currently active bookmark.

PAGEREF
The page number of the destination page of a hypertext link. This macro is available for
use within the HYPERLINKS entity section when bookmarks or hyperlinks are enabled
(See “Argus Controls”). See the configuration files html.cfg and htmlLink.cfg for exam-
ple usage.

Example:

Src Start =;

TARGET
The name of a hypertext reference within a document. This name is typically a unique
number generated by Argus. The number is unique within the document.

This macro is available within the HYPERLINKS entity section. For an example of its
usage see html.cfg.

Example:

[HYPERLINKS]
Dest End =;
Dest Start =*[TARGET]*;
Src End =;
Src Start =;
[-- END --]

URL
RTF_URL
Gives the url of the currently active bookmark. RTF_URL returns the same information
in a manner suitable for inclusion in an RTF document.

BYLINE
Outputs the author byline found within the current story. Only available when “Article
Sorting” is enabled within the “Document Features” section.

The byline is located within a story by a combination of examination of the story layout
and cross-reference of the byline lookup table contained in the file specified by “Byline
Path” in “Argus Controls” section.

Table Macros

CELLWIDTH
Width of the current cell in characters using the base font size.

COLINDEX
The distance from the left table edge to the right of the current column.
Page 71

Argus 5.1
COLRIGHT
<mult>

The distance from the left table edge to the right of the current column in points.
An optional numeric multiplier may be provided to scale the result.

COLSPAN
Gives the number of columns spanned by the current cell in the table. This is a number
from 1 to the number of columns in the table.

See the table definitions within html.cfg for an example of this and other table-specific
macros.

ISEMPTY
true <false>

Returns the true or false argument supplied depending on whether the current cell is emp-
ty.

If the truth argument is “*” it is ignored.

ISINTABLE
intable outtable

Outputs the ‘intable’ text if there is an active table, otherwise ‘outtable’ is output.

May be used for example to achieve different paragraph formatting when within a table
cell as apposed to normal body text.

ISROWSPAN
true <false>

Returns the true or false argument supplied depending on whether the current cell spans
more than one row.

Use the ROWSPAN macro to determine the actual number of rows being spanned.

ISTABBORDER
true <false>

Returns the true or false argument supplied depending on whether the current table is con-
sidered to have borders.

NUMCOLS
NUMROWS
Returns the number of columns/rows in the current table. If no table is currently in scope,
an error occurs.

The number of columns of computed from the maximum number of cell spans within a
row not just the number of cells in each row.

ROWINDEX
Returns the row number of the current row.

ROWSPAN
Gives the number of rows spanned by the current cell. Typically this value is 1. Only avail-
able within the ROW entity section.
Page 72

Argus 5.1
RTFCOLORTABLE
Outputs a definition of a colour table compatible with the RTF specification. This should
be output at the start of a document to define all of the colours used for text throughout
the document.

In order to reference the table within the text, use the indexed form of the COLOUR mac-
ro.

See the rtf.cfg configuration file for an example of its use.

RTFFONTTABLE
Produces a table listing each font used within a document. The format of the table is com-
patible with the RTF format. The table should be output at the start of an RTF document.

In order to reference the table within the text, use the indexed version of the FONTNAME
macro.

Style Sheet Construction & Reference

COLORINDEX
<offset>

Returns the index number of the current color definition. This is an index into the colour
table generated by the RTFCOLORTABLE macro. It will also correspond to the relevant
row number for tables output via the ColorDef format in the [CSS STYLE] section.

An optional numeric argument can be supplied which will then be added to the index.

[COLOUR]
Nesting Level =2;
End =\\cf0 ;
Start =\\cf[COLORINDEX 1] ;
[-- END --]

FONTINDEX
FONTBASEINDEX
<offset>

FONTINDEX returns the index number of the current font. This number will correspond
to a row number in the table output via the FontDef specification in the [CSS STYLE]
section. See “[CSS STYLE]” on page 40

An optional numeric argument can be supplied which will then be added to the index.

[FONT BANDS]
Font Band7 Nesting =1;
Font Band7 End =};
Font Band7 Start =\\s[FONTINDEX 1]\\f[FONTNAME index]\\fs[FONTSIZE rtf] {;
...

The FONTBASEINDEX macro outputs the index of the most common font within a doc-
ument.

GALLEYINDEX
<offset>

Returns the index number of the current galley. This number will correspond to a row
number in the table output via the GalleyDef specification in the [CSS STYLE] section.
See “[CSS STYLE]” on page 40.
Page 73

Argus 5.1
The optional numeric offset argument will be added to the return value.

GENSETINDEX
Returns the index number of the current class-based style. This number will correspond
to a row number in the table output via the GalleyDef specification in the [CSS STYLE]
section. See “[CSS STYLE]” on page 40

IGISITALIC
IGISBOLD
IGISMONOSPC
IGISBASECOL
true <false>

These macros may be used during construction of the class-based style sheet table
“GenSetDef”. They are out of scope at all other times.

Each macro performs a test on the currently active style’s attributes and return either the
true or false argument supplied dependent upon the result.

For example:

GalleyDef=[IGISITALIC “<i>”];

would cause the truth argument “<i>” to be output whenever the style active on output of
a table row was italic.

The IGISBASECOL macro outputs the truth argument whenever the current style’s text
colour is the same as the most common font’s text colour - that it, the same colour as the
majority of text in the document.

If the truth argument is set to “*”, it is ignored and only the false argument is output when
appropriate.

IINDEX
<offset>

Returns the row number of the table being constructed. This macro is only in scope during
table construction and should not be used otherwise.

The optional argument is an offset which is added to the result.

IMAGEINDEX
formatName

Returns the index number of the current image. This number will correspond to a row
number in the table output via the PictureDef specification in the [CSS STYLE] section.
See “[CSS STYLE]” on page 40

INFOTABLE
rowDefinitionName

This macro causes a style sheet table to be created using the named row format. The
number of rows generated for the table will depend upon the type of table and the current
document. For instance, the ColorDef table will contain one row for each different colour
used for text in the current document.

The values of formatName can be any one of:
Page 74

Argus 5.1
•GalleyDef,
•PicDef,
•ParaDef
•FontDef
•ColorDef.
•GenSetDef

Depending upon the kind of table being output, care must be taken on the placement of
this macro. The GalleyDef, PicDef and ParaDef tables can only be created when a page
is being analysed. This means for example, that requesting their creation within the
[DOCUMENT] section (which is output before any page analysis is done) would cause a
scope error.

See “[CSS STYLE]” on page 40 for information on constructing style tables using this
macro.

PARAINDEX
Returns the index number of the current image. This number will correspond to a row
number in the table output via the ParaDef specification in the [CSS STYLE] section. See
“[CSS STYLE]” on page 40

Image Macros

BYTES_PER_LINE
Returns the number of bytes of data in a line of pixels from the current image.

CAPTION
<“left” | “right” | “top” | “bottom” | “inside”>

Returns one or more captions associated with the current picture. If a position qualifier is
supplied (top, bottom etc.) then only the captions in the given position will be returned. If
no qualifier is given, all captions will be returned for the current picture.

Note that this macro will only work when used within the[PIC] section since this is the
only time when a picture is active. Used at any other time, it will produce an error.

For example, to output a picture as part of a table with all of its captions:

[PIC]
Start =<TABLE><CAPTION>[CAPTION]</CAPTION>
<TR><TD>
</TABLE>;
End =;
[-- END --]

NUM_BYTES
Returns the total number of bytes in the current image.

OPI
key

Returns the value of the given key in the OPI dictionary of the current image. If the key
is not found or the image has no OPI information dictionary, nothing is returned. This
macro is used in the imageConfigs/opieps.cfg file.
Page 75

Argus 5.1
Example:

[PIC]
Start=OPI Information for image '[OPINAME "image [PIC_NUM]"]':
Version : [OPI Version]
File-Spec : [OPI F]
ID : [OPI ID]
CropRect : [OPI CropRect]
Size : [OPI Size] ([PIX_WIDTH] x [PIX_HEIGHT] pixels)
Comments : [OPI Comments]
CropFixed : [OPI CropFixed]
Position : [OPI Position]
|Resolution : [OPI Resolution]
ColorType : [OPI ColorType]
Color : [OPI Color]
Tint : [OPI Tint]
Overprint : [OPI Overprint]
ImageType : [OPI ImageType]
GrayMap : [OPI GrayMap]
Tags : [OPI Tags]
Transparency : [OPI Transaparency]
;
End=;
[-- END --]

The values returned by this macro are representations of the PostScript objects held with-
in the dictionary.

OPINAME
default

Returns a filename representing the original filename of the current image as stored in its
associated OPI dictionary. If no filename can be found or there is no OPI dictionary, the
‘default’ text is output instead. Using this technique it is possible for example to output
images with their original names when found or a default name when not.

Example:

Image Path =docs/[FILENAME]/page[PAGENUM]/[OPINAME [PIC_NUM]][PIC_EXT];

This macro uses the values of either the ‘ID’ for ‘F’ keys to arrive at a name.

PIC_COUNT
Unique ID assigned to each image throughout the document being processed.

PIC_DEPTH
The bit depth of the color channels in the current image. For bitmap images depth will be
1, for most other formats the depth will be 8.

The number of color components can be inferred from the COLORSPACE value.

PIC_EXT
Returns a file extension suitable for the current image including the period. For example
“.jpg” for a jpeg format image.

PIC_NUM
This is a counter, incremented by one as each image is processed. It is reset at the end of
each page in the document It is provided as a means for generating unique image names
when outputting images.
Page 76

Argus 5.1
PIC_REZ
Returns the x & y resolution of the current image measured in dots per inch. For example,
an image that is 250.2 dpi(x) by 266.7 dpi(y), the result would be:

250x267

PIC_SPACE
Returns the name of the colour space of the current image as defined in the PDF Red
Book. The colourspace names are:

PIX_WIDTH
PIX_HEIGHT
Return the width and height of the current image in pixels.

Interactive Forms Macros
For examples of how the following macros may be used, see “See the description of the
FONTSIZE macro in the macros section for details of what it can do.” on page 61.

WIDGETKEY
keyname

Returns the named values from the current form element’s dictionary. Consult the PDF
specification for a list of standard key names.

Some key names which may be commonly required are:

• “T” The name of a field. For example “surname” or “age group”

• “TU” An optional user-friendly name used for navigation assistance

• “V” The value of a field.

To access a value within a sub-dictionary of a form element use the notation

<keyname>.<keyname>

WIDGETINDEX
Returns the id of the currently active form element. This id may be a digit or a piece of
text depending upon how the form was designed.

WIDGETOPTION
Returns the value of the current sub-element of a multi-option form element. Used for
dealing with list and combo box elements which commonly have multiple sub-options.

Color Space Names

NAME CHANNELS NOTES

Mask 1 Bitmap

Indexed - Indexed color space

DeviceGray 1 Grayscale

DeviceRGB 3

DeviceCMYK 4

CalGray 1 Calibrated Grayscale

CalRGB 3 Calibrated RGB

CIELAB 3 Device independent colour space
Page 77

Argus 5.1
This macro is only in scope within the ‘Middle’ section of list and combo box form ele-
ments.

For example:

[WIDGET:LIST]
Start =<SELECT MULTIPLE name=[WIDGETKEY T]>;
Middle =[WIDGETOPTION];
End =</SELECT>;
[-- END --]

WIDGETEXPORTVALUE
Returns the value of the widget that would be output if it were currently selected. Note
that this is not the same as the current value of the element.

For example, a checkbox with the values of ‘yes’ and ‘no’ may be currently ‘off’ which
means its value is ‘no’ though its export value (the ‘on’ value) is still ‘yes’.

ISEQUAL
a b onTrue <onFalse>

If the values of a and b are the same, the macro will copy the onTrue argument to output
otherwise it will copy of value of the onFalse argument (if supplied).

This macro is general purpose but is mentioned in this section since it is particularly use-
ful when dealing with interactive form elements.
Page 78

Appendix
Formatting Dates
Dates are formatted by using special place- holder characters, each corresponding to a dif-
ferent feature of the date or time. Arbitrary format sequences can be built using the %
symbol to form a complete format specification. Characters not proceeded by %, will be
output as is.

For example, assuming the date is 14th August, 1997:

%Y%m%d 19970814
%a %B %d, %Y Thu August 14, 1997
the %jth day of %Y the 227th day of 1997

It is essential to supply quotes around date formats because the whole format is represents
a single argument to the macro.

For example,

[CREATED "%a %B %d, %Y"]

The following table lists all of the available date and time formatting characters.

Date Formatting Symbols

SYMBOL DESCRIPTION

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time representation appropriate for locale

%d Day of month as decimal number (01 - 31)

%H Hour in 24- hour format (00 - 23)

%I Hour in 12- hour format (01 - 12)

%j Day of year as decimal number (001 - 366)

%m Month as decimal number (01 - 12)

%M Minute as decimal number (00 - 59)

%p Current locale’s A. M./ P. M. indicator for 12- hour clock

%S Second as decimal number (00 - 59)

%U Week of year as decimal number, with Sunday as first day of
week (00 - 51)

%w Weekday as decimal number (0 - 6; Sunday is 0)

%W Week of year as decimal number, with Monday as first day of
week (00 - 51)

%x Date representation for current locale

%X Time representation for current locale

%y Year without century, as decimal number (00 - 99)

%Y Year with century, as decimal number

%z, %Z Time- zone name or abbreviation; no characters if time zone is
unknown

%% Percent sign
Page 79

Appendix
Font Encodings
The table below lists the standard font encodings used in PDF document- PDFDoc, Mac-
Roman and WinAnsii.

These tables may be useful when running Argus in PDDoc mode. They will be of less use
when Argus is running in Unicode mode - see “[CHAR MAP]” on page 47 for more in-
formation.

When not running in Unicode mode, Argus represents all characters internally using PD-
FDoc encoding. This mean that the numbers on the left hand side of a CHAR MAP should
refer to PDFDoc encoding character positions. Similarly, the text on the right hand side
of a FONT MAP entry should be in PDFDoc encoding.

Some characters in PDFDoc cannot be typed on a normal keyboard. Use octal or 2-byte
hexadecimal notation to enter these.

For example:

[CHAR MAP]
d30 =(ring);
d139=%thousand;/* Maps ‰ to Ascii
[-- END --]

[FONT MAP:Symbol]
d045 =\212;/* Maps char 45 to ‘minus’ */
[-- END --]

DECIMAL OCTAL PDFDOC MACROMAN WINANSII

24 30 breve — —

25 31 caron — —

26 32 circumflex — —

27 33 dotaccent — —

28 34 hungarumlaut — —

29 35 ogonek — —

30 36 ring — —

31 37 tilde — —

32 40 space space space

33 41 exclam exclam exclam

34 42 quotedbl quotedbl quotedbl

35 43 numbersign numbersign numbersign

36 44 dollar dollar dollar

37 45 percent percent percent

38 46 ampersand ampersand ampersand

39 47 quotesingle quotesingle quotesingle

40 50 parenleft parenleft parenleft

41 51 parenright parenright parenright

42 52 asterisk asterisk asterisk

43 53 plus plus plus

44 54 comma comma comma

45 55 hyphen hyphen hyphen

46 56 period period period

47 57 slash slash slash

48 60 zero zero zero
Page 80

Appendix
49 61 one one one

50 62 two two two

51 63 three three three

52 64 four four four

53 65 five five five

54 66 six six six

55 67 seven seven seven

56 70 eight eight eight

57 71 nine nine nine

58 72 colon colon colon

59 73 semicolon semicolon semicolon

60 74 less less less

61 75 equal equal equal

62 76 greater greater greater

63 77 question question question

64 100 at at at

65 101 A A A

66 102 B B B

67 103 C C C

68 104 D D D

69 105 E E E

70 106 F F F

71 107 G G G

72 110 H H H

73 111 I I I

74 112 J J J

75 113 K K K

76 114 L L L

77 115 M M M

78 116 N N N

79 117 O O O

80 120 P P P

81 121 Q Q Q

82 122 R R R

83 123 S S S

84 124 T T T

85 125 U U U

86 126 V V V

87 127 W W W

88 130 X X X

89 131 Y Y Y

90 132 Z Z Z

91 133 bracketleft bracketleft bracketleft

92 134 backslash backslash backslash

93 135 bracketright bracketright bracketright

94 136 asciicircum asciicircum asciicircum

95 137 underscore underscore underscore

DECIMAL OCTAL PDFDOC MACROMAN WINANSII
Page 81

Appendix
96 140 grave grave grave

97 141 a a a

98 142 b b b

99 143 c c c

100 144 d d d

101 145 e e e

102 146 f f f

103 147 g g g

104 150 h h h

105 151 i i i

106 152 j j j

107 153 k k k

108 154 l l l

109 155 m m m

110 156 n n n

111 157 o o o

112 160 p p p

113 161 q q q

114 162 r r r

115 163 s s s

116 164 t t t

117 165 u u u

118 166 v v v

119 167 w w w

120 170 x x x

121 171 y y y

122 172 z z z

123 173 braceleft braceleft braceleft

124 174 bar bar bar

125 175 braceright braceright braceright

126 176 asciitilde asciitilde asciitilde

127 177 — — bullet

128 200 bullet Adieresis Euro

129 201 dagger Aring bullet

130 202 daggerdbl Ccedilla quotesinglbase

131 203 ellipsis Eacute florin

132 204 emdash Ntilde quotedblbase

133 205 endash Odieresis ellipsis

134 206 florin Udieresis dagger

135 207 fraction aacute daggerdbl

136 210 guilsinglleft agrave circumflex

137 211 guilsinglright acircumflex perthousand

138 212 minus adieresis Scaron

139 213 perthousand atilde guilsinglleft

140 214 quotedblbase aring OE

141 215 quotedblleft ccedilla bullet

142 216 quotedblright eacute Zcaron

DECIMAL OCTAL PDFDOC MACROMAN WINANSII
Page 82

Appendix
143 217 quoteleft egrave bullet

144 220 quoteright ecircumflex bullet

145 221 quotesinglbase edieresis quoteleft

146 222 trademark iacute quoteright

147 223 fi igrave quotedblleft

148 224 fl icircumflex quotedblright

149 225 Lslash idieresis bullet

150 226 OE ntilde endash

151 227 Scaron oacute emdash

152 230 Ydieresis ograve tilde

153 231 Zcaron ocircumflex trademark

154 232 dotlessi odieresis scaron

155 233 lslash otilde guilsinglright

156 234 oe uacute oe

157 235 scaron ugrave bullet

158 236 zcaron ucircumflex zcaron

159 237 — udieresis Ydieresis

160 240 Euro dagger space

161 241 exclamdown degree exclamdown

162 242 cent cent cent

163 243 sterling sterling sterling

164 244 currency section currency

165 245 yen bullet yen

166 246 brokenbar paragraph brokenbar

167 247 section germandbls section

168 250 dieresis registered dieresis

169 251 copyright copyright copyright

170 252 ordfeminine trademark ordfeminine

171 253 guillemotleft acute guillemotleft

172 254 logicalnot dieresis logicalnot

173 255 — — hyphen

174 256 registered AE registered

175 257 macron Oslash macron

176 260 degree degree

177 261 plusminus plusminus plusminus

178 262 twosuperior — twosuperior

179 263 threesuperior — threesuperior

180 264 acute yen acute

181 265 mu mu mu

182 266 paragraph — paragraph

183 267 periodcentered — periodcentered

184 270 cedilla — cedilla

185 271 onesuperior — onesuperior

186 272 ordmasculine — ordmasculine

187 273 guillemotright ordfeminine guillemotright

188 274 onequarter ordmasculine onequarter

189 275 onehalf — onehalf

DECIMAL OCTAL PDFDOC MACROMAN WINANSII
Page 83

Appendix
190 276 threequarters ae threequarters

191 277 questiondown oslash questiondown

192 300 Agrave questiondown Agrave

193 301 Aacute exclamdown Aacute

194 302 Acircumflex logicalnot Acircumflex

195 303 Atilde — Atilde

196 304 Adieresis florin Adieresis

197 305 Aring — Aring

198 306 AE — AE

199 307 Ccedilla guillemotleft Ccedilla

200 310 Egrave guillemotright Egrave

201 311 Eacute ellipsis Eacute

202 312 Ecircumflex space Ecircumflex

203 313 Edieresis Agrave Edieresis

204 314 Igrave Atilde Igrave

205 315 Iacute Otilde Iacute

206 316 Icircumflex OE Icircumflex

207 317 Idieresis oe Idieresis

208 320 Eth endash Eth

209 321 Ntilde emdash Ntilde

210 322 Ograve quotedblleft Ograve

211 323 Oacute quotedblright Oacute

212 324 Ocircumflex quoteleft Ocircumflex

213 325 Otilde quoteright Otilde

214 326 Odieresis divide Odieresis

215 327 multiply — multiply

216 330 Oslash ydieresis Oslash

217 331 Ugrave Ydieresis Ugrave

218 332 Uacute fraction Uacute

219 333 Ucircumflex currency Ucircumflex

220 334 Udieresis guilsinglleft Udieresis

221 335 Yacute guilsinglright Yacute

222 336 Thorn fi Thorn

223 337 germandbls fl germandbls

224 340 agrave daggerdbl agrave

225 341 aacute periodcentered aacute

226 342 acircumflex quotesinglbase acircumflex

227 343 atilde quotedblbase atilde

228 344 adieresis perthousand adieresis

229 345 aring Acircumflex aring

230 346 ae Ecircumflex ae

231 347 ccedilla Aacute ccedilla

232 350 egrave Edieresis egrave

233 351 eacute Egrave eacute

234 352 ecircumflex Iacute ecircumflex

235 353 edieresis Icircumflex edieresis

236 354 igrave Idieresis igrave

DECIMAL OCTAL PDFDOC MACROMAN WINANSII
Page 84

Appendix
Symbol Font Encoding
Although the font “Symbol” is a standard, built-in PDF font, it does not have the standard
encoding used by most of the other fonts. Instead it has a unique encoding as does Zap-
fDingbats. However, unlike Zapf, Symbol font includes meaningful names for all the
glyphs it contains.

Use the following table to construct new font maps for “Symbol” (besides the one pro-
vided with Argus). Alternatively, use the table to lookup glyph names directly when using
the “Glyph Names” feature of the FONT MAP section.

237 355 iacute Igrave iacute

238 356 icircumflex Oacute icircumflex

239 357 idieresis Ocircumflex idieresis

240 360 eth eth

241 361 ntilde Ograve ntilde

242 362 ograve Uacute ograve

243 363 oacute Ucircumflex oacute

244 364 ocircumflex Ugrave ocircumflex

245 365 otilde dotlessi otilde

246 366 odieresis circumflex odieresis

247 367 divide tilde divide

248 370 oslash macron oslash

249 371 ugrave breve ugrave

250 372 uacute dotaccent uacute

251 373 ucircumflex ring ucircumflex

252 374 udieresis cedilla udieresis

253 375 yacute hungarumlaut yacute

254 376 thorn ogonek thorn

255 377 ydieresis caron ydieresis

DECIMAL OCTAL GLYPH DECIMAL OCTAL GLYPH

032 040 space 161 241 Upsilon1

033 041 exclam 162 242 minute

034 042 universal 163 243 lessequal

035 043 numbersign 164 244 fraction

036 044 existential 165 245 infinity

037 045 percent 166 246 florin

038 046 ampersand 167 247 club

039 047 suchthat 168 250 diamond

040 050 parenleft 169 251 heart

041 051 parenright 170 252 spade

042 052 asteriskmath 171 253 arrowboth

043 053 plus 172 254 arrowleft

044 054 comma 173 255 arrowup

DECIMAL OCTAL PDFDOC MACROMAN WINANSII
Page 85

Appendix
045 055 minus 174 256 arrowright

046 056 period 175 257 arrowdown

047 057 slash 176 260 degree

048 060 zero 177 261 plusminus

049 061 one 178 262 second

050 062 two 179 263 greaterequal

051 063 three 180 264 multiply

052 064 four 181 265 proportional

053 065 five 182 266 partialdiff

054 066 six 183 267 bullet

055 067 seven 184 270 divide

056 070 eight 185 271 notequal

057 071 nine 186 272 equivalence

058 072 colon 187 273 approxequal

059 073 semicolon 188 274 ellipsis

060 074 less 189 275 arrowvertex

061 075 equal 190 276 arrowhorizex

062 076 greater 191 277 carriagereturn

063 077 question 192 300 aleph

064 100 congruent 193 301 Ifraktur

065 101 Alpha 194 302 Rfraktur

066 102 Beta 195 303 weierstrass

067 103 Chi 196 304 circlemultiply

068 104 Delta 197 305 circleplus

069 105 Epsilon 198 306 emptyset

070 106 Phi 199 307 intersection

071 107 Gamma 200 310 union

072 110 Eta 201 311 propersuperset

073 111 Iota 202 312 reflexsuperset

074 112 theta1 203 313 notsubset

075 113 Kappa 204 314 propersubset

076 114 Lambda 205 315 reflexsubset

077 115 Mu 206 316 element

078 116 Nu 207 317 notelement

079 117 Omicron 208 320 angle

080 120 Pi 209 321 gradient

081 121 Theta 210 322 registerserif

082 122 Rho 211 323 copyrightserif

083 123 Sigma 212 324 trademarkserif

084 124 Tau 213 325 product

085 125 Upsilon 214 326 radical

086 126 sigma1 215 327 dotmath

087 127 Omega 216 330 logicalnot

088 130 Xi 217 331 logicaland

089 131 Psi 218 332 logicalor

DECIMAL OCTAL GLYPH DECIMAL OCTAL GLYPH
Page 86

Appendix
090 132 Zeta 219 333 arrowdblboth

091 133 bracketleft 220 334 arrowdblleft

092 134 therefore 221 335 arrowdblup

093 135 bracketright 222 336 arrowdblright

094 136 perpendicular 223 337 arrowdbldown

095 137 underscore 224 340 lozenge

096 140 radicalex 225 341 angleleft

097 141 alpha 226 342 registersans

098 142 beta 227 343 copyrightsans

099 143 chi 228 344 trademarksans

100 144 delta 229 345 summation

101 145 epsilon 230 346 parenlefttp

102 146 phi 231 347 parenleftex

103 147 gamma 232 350 parenleftbt

104 150 eta 233 351 bracketlefttp

105 151 iota 234 352 bracketleftex

106 152 phi1 235 353 bracketleftbt

107 153 kappa 236 354 bracelefttp

108 154 lambda 237 355 braceleftmid

109 155 mu 238 356 braceleftbt

110 156 nu 239 357 braceex

111 157 omicron 241 361 angleright

112 160 pi 242 362 integral

113 161 theta 243 363 integraltp

114 162 rho 244 364 integralex

115 163 sigma 245 365 integralbt

116 164 tau 246 366 parenrighttp

117 165 upsilon 247 367 parenrightex

118 166 omega1 248 370 parenrightbt

119 167 omega 249 371 bracketrighttp

120 170 xi 250 372 bracketrightex

121 171 psi 251 373 bracketrightbt

122 172 zeta 252 374 bracerighttp

123 173 braceleft 253 375 bracerightmid

124 174 bar 254 376 bracerightbt

125 175 braceright

126 176 similar

DECIMAL OCTAL GLYPH DECIMAL OCTAL GLYPH
Page 87

Appendix
Error Return Values
On exit Argus returns a status code describing the reason for exit. An exit code of zero
means processing was successful. All other codes indicate an error.

Though there is no detailed explanation of all the possible error conditions, the following
is a list of mnemonics used internaly by Iceni to define the error codes. This list may be
useful in producing some text explanation of the error.

0 kNoError 20 kStackOverflow

1 kBuffTooSmall 21 kStackUnderflow

2 kBadlyFormedExpression 22 kWriteFailed

3 kNoSuchObject 23 kBadNozzle

4 kOutOfMemory 24 kInvalidArgument

5 kOpenFailed 25 kNotInScope

6 kBadFilename 26 kNotAvailable

7 kTooManyArguments 27 kToolkitNotReady

8 kMissingQuote 28 kLimitCheck

9 kUnknownMacro 29 kMismatch

10 kMissingArguments 30 kAtomicObject

11 kReadFailed 31 kUserCancel

12 kSyntaxError 32 kSystemError

13 kFileNameTooLong 33 kUnmatchedMark

14 kUnexpectedFormat 34 kMissingKey

15 kDoesNotExist 35 kTypeCheck

16 kCreateFailed 36 kParsingError

17 kInvalidImage 37 kInvalidDongle

18 kAcroError 38 kEndOfData

19 kOutOfRange
Page 88

Appendix
Encoding Names
Below is a list of all encoding names recognised by the encoding translation module built-
into Argus. Each numbered name may be followed by a number of synonyms. Either the
name or its synonym may be used to specify the output encoding. See “[CHAR MAP]”
on page 47 for more details.

000. UTF8
utf-8
ibm-1208
cp1208

001. UTF16_BigEndian
utf-16be
x-utf-16be

002. UTF16_LittleEndian
utf-16le
x-utf-16le

003. UTF16_PlatformEndian
ISO-10646-UCS-2
csUnicode
utf-16
ibm-17584
ibm-13488
ibm-1200
cp1200
ucs-2

004. UTF16_OppositeEndian

005. UTF32_BigEndian
utf-32be

006. UTF32_LittleEndian
utf-32le

007. UTF32_PlatformEndian
ISO-10646-UCS-4
csUCS4
utf-32
ucs-4

008. UTF32_OppositeEndian

009. UTF-7

010. SCSU

011. LATIN_1
iso-8859-1
ibm-819
cp819
latin1
8859-1
csisolatin1
iso-ir-100
cp367
ISO_8859-1:1987

l1
ANSI_X3.110-1983
819

012. US-ASCII
ascii
ascii-7
ANSI_X3.4-1968
ANSI_X3.4-1986
ISO_646.irv:1991
iso646-us
us
csASCII
646
iso-ir-6

013. ISO_2022
ISO-2022
2022
cp2022

014. ISO_2022,locale=ja,version=0
ISO-2022-JP
csISO2022JP

015. ISO_2022,locale=ja,version=1
ISO-2022-JP-1
JIS
JIS_Encoding

016. ISO_2022,locale=ja,version=2
ISO-2022-JP-2
csISO2022JP2

017. ISO_2022,locale=ja,version=3
JIS7

018. ISO_2022,locale=ja,version=4
JIS8

019. ISO_2022,locale=ko,version=0
ISO-2022-KR
csISO2022KR

020. ISO_2022,locale=ko,version=1
ibm-25546
ibm-25546_P100
25546

021. ISO_2022,locale=zh,version=0
ISO-2022-CN
csISO2022CN
Page 89

Appendix
022. ISO_2022,locale=zh,version=1
ISO-2022-CN-EXT

023. HZ
HZ-GB-2312

024. LMBCS-1
lmbcs

025. LMBCS-2

026. LMBCS-3

027. LMBCS-4

028. LMBCS-5

029. LMBCS-6

030. LMBCS-8

031. LMBCS-11

032. LMBCS-16

033. LMBCS-17

034. LMBCS-18

035. LMBCS-19

036. ibm-367

037. ebcdic-xml-us

038. ibm-912
iso-8859-2
cp912
latin2
8859-2
csisolatin2
iso-ir-101
ISO_8859-2:1987
l2
912

039. ibm-913
iso-8859-3
latin3
cp913
8859-3
csisolatin3
iso-ir-109
ISO_8859-3:1988
l3
913

040. ibm-914
iso-8859-4
latin4
cp914

8859-4
csisolatin4
iso-ir-110
ISO_8859-4:1988
l4
914

041. ibm-915
iso-8859-5
cyrillic
cp915
8859-5
csisolatincyrillic
iso-ir-144
ISO_8859-5:1988
915

042. ibm-1089
iso-8859-6
arabic
cp1089
8859-6
csisolatinarabic
iso-ir-127
ISO_8859-6:1987
ecma-114
asmo-708
1089

043. ibm-4909
cp813
iso-8859-7
greek
greek8
elot_928
ecma-118
8859-7
csisolatingreek
iso-ir-126
ISO_8859-7:1987
813

044. ibm-813

045. ibm-916
iso-8859-8
hebrew
cp916
8859-8
csisolatinhebrew
iso-ir-138
ISO_8859-8:1988
916

046. ibm-920
iso-8859-9
ECMA-128
latin5
cp920
8859-9
csisolatin5
Page 90

Appendix
iso-ir-148
ISO_8859-9:1989
l5
920

047. ibm-923
iso-8859-15
latin9
cp923
8859-15
latin0
csisolatin0
iso8859_15_fdis
csisolatin9
923

048. ibm-1252
ibm-1004
cp1004

049. ibm-943_P130-2000
ibm-943_VASCII_VSUB_VPUA
ibm-943

050. ibm-943_P14A-2000
ibm-943_VSUB_VPUA
Shift_JIS
csWindows31J
sjis
cp943
cp932
ms_kanji
csshiftjis
windows-31j
x-sjis
943

051. ibm-949_P110-2000
ibm-949_VASCII_VSUB_VPUA
ibm-949

052. ibm-949_P11A-2000
ibm-949_VSUB_VPUA
KS_C_5601-1987
iso-ir-149
KS_C_5601-1989
csKSC56011987
KSC_5601
johab
ks_x_1001:1992
949
ksc5601_1992

053. ibm-1370
Big5
csBig5
x-big5
cp950
950

054. ibm-950

055. ibm-1386
gbk
cp936
zh_cn

056. ibm-33722
EUC-JP
ibm-eucJP
eucjis
cseucpkdfmtjapanese
X-EUC-JP
cp33722
33722

057. ibm-970
EUC-KR
ibm-eucKR
csEUCKR

058. ibm-964
EUC-TW
ibm-eucTW
cns11643

059. ibm-1383
EUC-CN
ibm-eucCN
GB_2312-80
chinese
gb
iso-ir-58
csISO58GB231280
GB2312
gb2312-1980
cp1383
1383

060. ibm-1162
tis-620
cp874
windows-874
ms874
cp9066
874

061. ibm-874
ibm-1161

062. ibm-437
cp437
csPC8CodePage437
437

063. ibm-850
IBM850
cp850
850
csPC850Multilingual

064. ibm-851
Page 91

Appendix
IBM851
cp851
851
csPC851

065. ibm-858
cp858
IBM00858

066. ibm-9044
852
csPCp852
cp852

067. ibm-852
IBM852

068. ibm-872
855
csIBM855
cp855
csPCp855

069. ibm-855
IBM855

070. ibm-856
cp856
856

071. ibm-9049
857
csIBM857
cp857

072. ibm-857
IBM857

073. ibm-859
cp859

074. ibm-860
IBM860
cp860
860
csIBM860

075. ibm-861
IBM861
cp861
861
cp-is
csIBM861

076. ibm-867
cp867
862
cp862
cspc862latinhebrew

077. ibm-862

IBM862

078. ibm-863
IBM863
cp863
863
csIBM863

079. ibm-17248
cp864
csIBM864

080. ibm-864
IBM864

081. ibm-865
IBM865
cp865
865
csIBM865

082. ibm-808
cp866
866
csIBM866

083. ibm-866

084. ibm-868
IBM868
cp868
cp-ar
csIBM868
868

085. ibm-9061
cp869
869
cp-gr
csIBM869

086. ibm-869
IBM869

087. ibm-878
KOI8-R
cp878
koi8
cskoi8r

088. ibm-901
cp921
921

089. ibm-921

090. ibm-902
cp922
922

091. ibm-922
Page 92

Appendix
092. ibm-942_P120-2000
ibm-942_VASCII_VSUB_VPUA
ibm-942
ibm-932
ibm-932_VASCII_VSUB_VPUA

093. ibm-942_P12A-2000
ibm-942_VSUB_VPUA
shift_jis78
sjis78
pck
ibm-932_VSUB_VPUA

094. ibm-5346
windows-1250
cp1250

095. ibm-5347
windows-1251
cp1251

096. ibm-5348
windows-1252
cp1252

097. ibm-5349
windows-1253
cp1253

098. ibm-5350
windows-1254
cp1254

099. ibm-5351
windows-1255
cp1255

100. ibm-5352
windows-1256
cp1256

101. ibm-5353
windows-1257
cp1257

102. ibm-5354
windows-1258
cp1258

103. ibm-1250

104. ibm-1251

105. ibm-1253

106. ibm-1254

107. ibm-1255

108. ibm-1256

109. ibm-1257

110. ibm-1258

111. ibm-1275
macintosh
mac
csMacintosh

112. ibm-1276
Adobe-Standard-Encoding
csAdobeStandardEncoding

113. ibm-1277
Adobe-Latin1-Encoding

114. ibm-1280
macgr

115. ibm-1281
mactr

116. ibm-1282
macce

117. ibm-1283
maccy

118. ibm-1051
hp-roman8
roman8
r8
csHPRoman8

119. ibm-1388

120. ibm-849
cp1131

121. ibm-848
cp1125

122. ibm-5104
cp1008

123. ibm-9238
cp1046

124. ibm-1363_P110-2000
ibm-1363
ibm-1363_VASCII_VSUB_VPUA
ibm-1362

125. ibm-1363_P11B-2000
ibm-1363_VSUB_VPUA
windows-949
cp949
cp1363
ksc
korean
Page 93

Appendix
126. ibm-5210
cp1114

127. ibm-21427
cp947

128. ibm-37
IBM037
ibm-037
cpibm37
ebcdic-cp-us
ebcdic-cp-ca
ebcdic-cp-wt
ebcdic-cp-nl
csIBM037
cp37
cp037
037

129. ibm-273
IBM273
csIBM273
ebcdic-de
cp273
cpibm273
273

130. ibm-277
IBM277
EBCDIC-CP-DK
EBCDIC-CP-NO
csIBM277
ebcdic-dk
cp277
cpibm277
277

131. ibm-278
IBM278
ebcdic-cp-fi
ebcdic-cp-se
csIBM278
ebcdic-sv
cp278
cpibm278
278

132. ibm-280
IBM280
ebcdic-cp-it
csIBM280
cp280
cpibm280
280

133. ibm-284
IBM284
ebcdic-cp-es
csIBM284
cp284

cpibm284
284

134. ibm-285
IBM285
ebcdic-cp-gb
csIBM285
ebcdic-gb
cp285
cpibm285
285

135. ibm-290
IBM290
EBCDIC-JP-kana
csIBM290
cp290

136. ibm-297
IBM297
ebcdic-cp-fr
csIBM297
cp297
cpibm297
297

137. ibm-420
IBM420
ebcdic-cp-ar1
csIBM420
cp420
420

138. ibm-424
IBM424
ebcdic-cp-he
csIBM424
cp424
424

139. ibm-500
IBM500
cpibm500
csIBM500
cp500
ebcdic-cp-be
ebcdic-cp-ch
500

140. ibm-803
cp803

141. ibm-834
cp834

142. ibm-835
cp835

143. ibm-871
IBM871
ebcdic-cp-is
Page 94

Appendix
csIBM871
cpibm871
cp871
871

144. ibm-930
cp930
cpibm930
930

145. ibm-933
cp933
cpibm933
933

146. ibm-935
cp935
cpibm935
935

147. ibm-937
cp937
cpibm937
937

148. ibm-939
cp939
939

149. ibm-1006_P100-2000
ibm-1006
ibm-1006_VPUA

150. ibm-1006_X100-2000
ibm-1006_STD

151. ibm-1025_P100-2000
ibm-1025
ibm-1025_STD

152. ibm-1026_P100-2000
ibm-1026
CP1026
IBM1026
csIBM1026
ibm-1026_STD

153. ibm-1097_P100-2000
ibm-1097
ibm-1097_VPUA

154. ibm-1097_X100-2000
ibm-1097_STD

155. ibm-1098_P100-2000
ibm-1098
ibm-1098_VSUB_VPUA

156. ibm-1098_X100-2000
ibm-1098_VSUB

157. ibm-1112_P100-2000
ibm-1112
cp1112
1112
ibm-1112_STD

158. ibm-1122_P100-2000
ibm-1122
cp1122
ibm-1122
1122
ibm-1122_STD

159. ibm-1124_P100-2000
ibm-1124
ibm-1124_STD

160. ibm-1125_P100-2000
ibm-1125
ibm-1125_VSUB

161. ibm-1129_P100-2000
ibm-1129
ibm-1129_STD

162. ibm-1130_P100-2000
ibm-1130
ibm-1130_STD

163. ibm-1131_P100-2000
ibm-1131
ibm-1131_VSUB

164. ibm-1132_P100-2000
ibm-1132
ibm-1132_STD

165. ibm-1133_P100-2000
ibm-1133
ibm-1133_STD

166. ibm-1137_P100-2000
ibm-1137
ibm-1137_STD

167. ibm-1381_P110-2000
ibm-1381
ibm-1381_VSUB_VPUA

168. ibm-806_P100-2000
ibm-806
ibm-806_VSUB

169. ibm-870_P100-2000
ibm-870
CP870
IBM870
ibm-870_STD
ebcdic-cp-roece
ebcdic-cp-yu
csIBM870
Page 95

Appendix
170. ibm-875_P100-2000
ibm-875
cp875
ibm-875
875
ibm-875_STD

171. ibm-9030_P100-2000
ibm-9030
ibm-9030_STD

172. ibm-9066_P100-2000
ibm-9066
ibm-9066_VSUB

173. ibm-918_P100-2000
ibm-918
CP918
IBM918
ibm-918_VPUA
ebcdic-cp-ar2
csIBM918

174. ibm-918_X100-2000
ibm-918_STD

175. ibm-1390
cpibm1390

176. ibm-1371
cpibm1371

177. ibm-1047
cpibm1047

178. ibm-1123
cpibm1123

179. ibm-1140
cpibm1140
IBM01140

180. ibm-1141
cpibm1141
IBM01141

181. ibm-1142
cpibm1142
IBM01142

182. ibm-1143
cpibm1143
IBM01143

183. ibm-1144
cpibm1144

184. ibm-1145
cpibm1145

185. ibm-1146
cpibm1146

186. ibm-1147
cpibm1147

187. ibm-1148
cpibm1148

188. ibm-1149
cpibm1149
ebcdic-is

189. ibm-1153
cpibm1153

190. ibm-1154
cp1025
cpibm1154

191. ibm-1155
cpibm1155

192. ibm-1156
cpibm1156

193. ibm-1157
cpibm1157

194. ibm-1158
cp1123
cpibm1158
1123

195. ibm-1159
cp28709

196. ibm-1160
cp9030
cpibm1160

197. ibm-1164
cp1130
cpibm1164

198. ibm-1399

199. ibm-1364_P110-2000
ibm-1364_VPUA
ibm-1364
cp1364

200. ibm-8482

201. ibm-4899
cpibm4899

202. ibm-4971
cpibm4971

203. ibm-9027
Page 96

Appendix
204. ibm-5123
cp1027

205. ibm-12712
cpibm12712
ebcdic-he

206. ibm-16684
cp300

207. ibm-16804
cpibm16804
ebcdic-ar

208. ibm-37-s390
ibm037-s390

209. ibm-1047-s390

210. ibm-1140-s390

211. ibm-1142-s390

212. ibm-1143-s390

213. ibm-1144-s390

214. ibm-1145-s390

215. ibm-1146-s390

216. ibm-1147-s390

217. ibm-1148-s390

218. ibm-1149-s390

219. ibm-1153-s390

220. ibm-12712-s390

221. ibm-16804-s390

222. gb18030
Page 97

Appendix
Notes
Page 98

	Copyright Notice
	Notice Of Change
	Contact Details
	Introduction
	Using This Manual

	What’s New In Version 5.1
	New for Version 5.0

	Installation
	Installing the Software
	Obtaining a License Key
	SDK
	Compatibility

	Operation
	Page Geometry Dump
	Pre-Programming Annotations
	Adding Annotations To Every Page
	Automatically Cropping Pages
	Using Text Order Templates

	Dealing With Iconic Font Characters
	Processing Structured Documents
	Not All Documents Are Structured
	Processing Documents

	Extraction Options
	Bookmarks
	Bookmark Path
	Synth Bookmarks
	Built In Fonts Dir
	CMap Path
	Gridded Text
	Hyperlinks
	Image Output
	Image Path
	Output Threads
	Remove Text Items
	Rotation
	Structured Output
	Tabulated Output
	Text Output
	Text Path
	Word List
	Word Map Path

	The Configuration File
	Supported Escape Sequences
	Sections
	[SPOOLER]
	Batch Mode
	Input Dir
	Error Dir
	Completed Dir
	Filter
	Log File
	Error Halt
	Keep Log
	Poll rate
	Stable time
	Max. Log Size (kB) Log Trunc. Size (kB)

	[Document Features]
	Article Sorting
	Auto Crop Render
	Captions
	ClassMarkup
	Collapse Spaces
	Combine Slivers
	Crop White
	De-hyphenation
	Full Page Render Zone
	Hebrew
	Illustrations
	Ignore Text
	Layout
	Line Breaks
	Para Gap
	Raw Map Words
	Span Galleys
	Speechmark Recognition
	Tab Table
	Unicode
	XY Sorting Column Sorting No Sorting

	[Image Style]
	Alias Limit
	Colour Format
	Copyright
	Comment
	File Format
	Greek Limit
	Image Quality
	Scale Mode, XScale, YScale

	[ZONE CONTROL]
	Boxes
	Vertical Lines, Horizontal Lines

	[FONT MAP]
	Unicode & Double Byte Mapping
	The “Ignore” flag
	Font Attributes
	Glyph Name Output

	[CHAR MAP]
	Dbl Byte Esc Start Dbl Byte Esc End
	Dbl Byte Format
	Encoding
	Removing Line Breaks

	[RESET ON]
	[LIMITS]
	MinFontSize
	Table Spacing Factor
	FontSizeGapRatio

	Interactive Forms
	[WIDGET]
	[WIDGET:TEXT]
	[WIDGET:BUTTON]
	[WIDGET:CHECKBOX]
	[WIDGET:RADIO]
	[WIDGET:LIST] [WIDGET:COMBO]

	Character Markup
	Entity Markup
	Document, Page
	Story
	Headline, Byline, Story Text
	Bookmark
	Caption
	Para
	Table, Row, Cell
	Pic
	[CLASS SPAN]
	[CSS STYLE]
	Path
	Format
	ColorDef
	FontDef
	GalleyDef ParaDef
	PicDef
	GenSetDef
	INFOTABLE

	[FONT BANDS]

	USING MACROS
	Documentation Conventions
	Utility Macros
	CHCASE
	COUNTER
	FTRUNC
	HEAD
	INCLUDE
	MARKUP
	MEDIACHANGE
	REPEAT
	SECTION
	TAIL
	TODAY TOMORROW YESTERDAY
	VALUE

	Document Information Macros
	AUTHOR CREATED MODIFIED
	CREATOR KEYWORDS PRODUCER SUBJECT TITLE
	CLEAN_FILENAME
	FILENAME
	KEY
	PAGENUM
	PAGELABEL
	PAGECOUNT
	PATHNAME
	THREAD
	THREAD_TITLE THREAD_SUBJECT THREAD_AUTHOR THREAD_K...
	THREAD_ID

	Font & Character Information Macros
	COLOR
	FONTFAMILY FONTBASEFAMILY
	FONTNAME
	FONTSIZE
	FONTBASESIZE
	HTMLFONTFAMILY
	LEADING
	SYLKFORMAT

	Geometry Macros
	ALIGN
	INDENT
	INDENTSIZE
	MARGINSIZE
	WIDTH PAGEWIDTH HEIGHT PAGEHEIGHT POSX PAGEPOSX PO...

	Hyperlinks & Bookmarks
	BOOKMARK_TITLE
	HYPERDEST IFHYPERDEST
	NESTING
	PAGEREF
	TARGET
	URL RTF_URL
	BYLINE

	Table Macros
	CELLWIDTH
	COLINDEX
	COLRIGHT
	COLSPAN
	ISEMPTY
	ISINTABLE
	ISROWSPAN
	ISTABBORDER
	NUMCOLS NUMROWS
	ROWINDEX
	ROWSPAN
	RTFCOLORTABLE
	RTFFONTTABLE

	Style Sheet Construction & Reference
	COLORINDEX
	FONTINDEX FONTBASEINDEX
	GALLEYINDEX
	GENSETINDEX
	IGISITALIC IGISBOLD IGISMONOSPC IGISBASECOL
	IINDEX
	IMAGEINDEX
	INFOTABLE
	PARAINDEX

	Image Macros
	BYTES_PER_LINE
	CAPTION
	NUM_BYTES
	OPI
	OPINAME
	PIC_COUNT
	PIC_DEPTH
	PIC_EXT
	PIC_NUM
	PIC_REZ
	PIC_SPACE
	PIX_WIDTH PIX_HEIGHT

	Interactive Forms Macros
	WIDGETKEY
	WIDGETINDEX
	WIDGETOPTION
	WIDGETEXPORTVALUE
	ISEQUAL

	Formatting Dates
	Font Encodings
	Symbol Font Encoding

	Error Return Values
	Encoding Names
	Notes

